Assertion [tex]$(A): P(x) = x^3 - 23x^2 + 142x - 120$[/tex], [tex]$(x - 10)$[/tex] is a factor of the polynomial.

Reason [tex]$(R):$[/tex] If [tex]$P(x)$[/tex] is a polynomial of degree greater than or equal to 1, then [tex]$x - c$[/tex] is a factor of [tex]$P(x)$[/tex] if [tex]$P(c) = 0$[/tex].



Answer :

To determine whether [tex]\( (x - 10) \)[/tex] is a factor of the polynomial [tex]\( P(x) = x^3 - 23x^2 + 142x - 120 \)[/tex], we can use the Factor Theorem. The Factor Theorem states that [tex]\( (x - a) \)[/tex] is a factor of the polynomial [tex]\( P(x) \)[/tex] if and only if [tex]\( P(a) = 0 \)[/tex].

### Step-by-Step Solution:

1. Substitute [tex]\( x = 10 \)[/tex] into [tex]\( P(x) \)[/tex]:

[tex]\[ P(10) = (10)^3 - 23(10)^2 + 142(10) - 120 \][/tex]

2. Calculate [tex]\( 10^3 \)[/tex]:

[tex]\[ 10^3 = 1000 \][/tex]

3. Calculate [tex]\( 23 \cdot 10^2 \)[/tex]:

[tex]\[ 23 \cdot 10^2 = 23 \cdot 100 = 2300 \][/tex]

4. Calculate [tex]\( 142 \cdot 10 \)[/tex]:

[tex]\[ 142 \cdot 10 = 1420 \][/tex]

5. Combine all terms:

[tex]\[ P(10) = 1000 - 2300 + 1420 - 120 \][/tex]

6. Perform the arithmetic operations step-by-step:

[tex]\[ 1000 - 2300 = -1300 \][/tex]

[tex]\[ -1300 + 1420 = 120 \][/tex]

[tex]\[ 120 - 120 = 0 \][/tex]

7. Conclusion:

Since [tex]\( P(10) = 0 \)[/tex], by the Factor Theorem, [tex]\( (x - 10) \)[/tex] is indeed a factor of the polynomial [tex]\( P(x) = x^3 - 23x^2 + 142x - 120 \)[/tex].

### Relation between Assertion (A) and Reason (R):

- Assertion (A): [tex]\( P(x)=x^3 - 23 x^2 + 142 x - 120 \)[/tex], [tex]\( (x-10) \)[/tex] is a factor of the polynomial.

This is true based on the computation above.

- Reason (R): If [tex]\( P(x) \)[/tex] is a polynomial of degree greater than or equal to 1, then [tex]\( (x - a) \)[/tex] is a factor of [tex]\( P(x) \)[/tex] if [tex]\( P(a) = 0 \)[/tex].

This is also true and states the Factor Theorem.

Since both Assertion (A) and Reason (R) are true, and (R) correctly explains (A), we can state that:

### Final Answer:

Both Assertion (A) and Reason (R) are true, and Reason (R) is the correct explanation of Assertion (A).