Answer :
Sure! Let's explore the sum of the interior angles of regular polygons step-by-step.
The sum of the interior angles of a polygon can be determined using the formula:
[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]
where [tex]\( n \)[/tex] represents the number of sides of the polygon.
### Given Polygons:
1. Pentagon ([tex]\(n = 5\)[/tex])
2. Hexagon ([tex]\(n = 6\)[/tex])
3. Octagon ([tex]\(n = 8\)[/tex])
4. Decagon ([tex]\(n = 10\)[/tex])
Let's calculate the sum of the interior angles for each of these polygons:
1. Pentagon (5 sides):
[tex]\[ \text{Sum of interior angles} = (5 - 2) \times 180^\circ = 3 \times 180^\circ = 540^\circ \][/tex]
2. Hexagon (6 sides):
[tex]\[ \text{Sum of interior angles} = (6 - 2) \times 180^\circ = 4 \times 180^\circ = 720^\circ \][/tex]
3. Octagon (8 sides):
[tex]\[ \text{Sum of interior angles} = (8 - 2) \times 180^\circ = 6 \times 180^\circ = 1080^\circ \][/tex]
4. Decagon (10 sides):
[tex]\[ \text{Sum of interior angles} = (10 - 2) \times 180^\circ = 8 \times 180^\circ = 1440^\circ \][/tex]
### Results:
- Pentagon: The sum of the interior angles is [tex]\(540^\circ\)[/tex].
- Hexagon: The sum of the interior angles is [tex]\(720^\circ\)[/tex].
- Octagon: The sum of the interior angles is [tex]\(1080^\circ\)[/tex].
- Decagon: The sum of the interior angles is [tex]\(1440^\circ\)[/tex].
These sums are important as they help in determining the individual angle measures in regular polygons and assist in drawing polygons accurately.
The sum of the interior angles of a polygon can be determined using the formula:
[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]
where [tex]\( n \)[/tex] represents the number of sides of the polygon.
### Given Polygons:
1. Pentagon ([tex]\(n = 5\)[/tex])
2. Hexagon ([tex]\(n = 6\)[/tex])
3. Octagon ([tex]\(n = 8\)[/tex])
4. Decagon ([tex]\(n = 10\)[/tex])
Let's calculate the sum of the interior angles for each of these polygons:
1. Pentagon (5 sides):
[tex]\[ \text{Sum of interior angles} = (5 - 2) \times 180^\circ = 3 \times 180^\circ = 540^\circ \][/tex]
2. Hexagon (6 sides):
[tex]\[ \text{Sum of interior angles} = (6 - 2) \times 180^\circ = 4 \times 180^\circ = 720^\circ \][/tex]
3. Octagon (8 sides):
[tex]\[ \text{Sum of interior angles} = (8 - 2) \times 180^\circ = 6 \times 180^\circ = 1080^\circ \][/tex]
4. Decagon (10 sides):
[tex]\[ \text{Sum of interior angles} = (10 - 2) \times 180^\circ = 8 \times 180^\circ = 1440^\circ \][/tex]
### Results:
- Pentagon: The sum of the interior angles is [tex]\(540^\circ\)[/tex].
- Hexagon: The sum of the interior angles is [tex]\(720^\circ\)[/tex].
- Octagon: The sum of the interior angles is [tex]\(1080^\circ\)[/tex].
- Decagon: The sum of the interior angles is [tex]\(1440^\circ\)[/tex].
These sums are important as they help in determining the individual angle measures in regular polygons and assist in drawing polygons accurately.