Given the function [tex]g(x) = -3x + 4[/tex], compare and contrast [tex]g(-2)[/tex] and [tex]g(4)[/tex]. Choose the statement that is true concerning these two values.

A. The value of [tex]g(-2)[/tex] is smaller than the value of [tex]g(4)[/tex].
B. The value of [tex]g(-2)[/tex] is the same as the value of [tex]g(4)[/tex].
C. The values of [tex]g(-2)[/tex] and [tex]g(4)[/tex] cannot be compared.
D. The value of [tex]g(-2)[/tex] is larger than the value of [tex]g(4)[/tex].



Answer :

To solve the problem, we need to evaluate the function [tex]\(g(x) = -3x + 4\)[/tex] at two specific points: [tex]\(x = -2\)[/tex] and [tex]\(x = 4\)[/tex].

### Step-by-Step Solution

1. Evaluate [tex]\(g(x)\)[/tex] at [tex]\(x = -2\)[/tex]:
[tex]\[ g(-2) = -3(-2) + 4 \][/tex]
Perform the multiplication first:
[tex]\[ g(-2) = 6 + 4 \][/tex]
Then, add the results:
[tex]\[ g(-2) = 10 \][/tex]

2. Evaluate [tex]\(g(x)\)[/tex] at [tex]\(x = 4\)[/tex]:
[tex]\[ g(4) = -3(4) + 4 \][/tex]
Perform the multiplication first:
[tex]\[ g(4) = -12 + 4 \][/tex]
Then, add the results:
[tex]\[ g(4) = -8 \][/tex]

3. Compare [tex]\(g(-2)\)[/tex] and [tex]\(g(4)\)[/tex]:
Now we have [tex]\(g(-2) = 10\)[/tex] and [tex]\(g(4) = -8\)[/tex]. We need to compare these two values.
[tex]\[ 10 \text{ (which is } g(-2) \text{) is greater than -8 (which is } g(4) \text{)} \][/tex]

### Conclusion
Based on the calculations:
- The value of [tex]\(g(-2)\)[/tex] is [tex]\(10\)[/tex].
- The value of [tex]\(g(4)\)[/tex] is [tex]\(-8\)[/tex].

Thus, we can conclude:
The value of [tex]\(g(-2)\)[/tex] is larger than the value of [tex]\(g(4)\)[/tex].

So, the correct statement is:
- The value of [tex]\(g(-2)\)[/tex] is larger than the value of [tex]\(g(4)\)[/tex].