Solve these equations by inspection.

a) [tex]\( 8 + y = 25 \)[/tex]

b) [tex]\( 2x = 82 \)[/tex]

c) [tex]\( 3m = -48 \)[/tex]

d) [tex]\( \frac{x}{2} = 15 \)[/tex]

e) [tex]\( 27 + p = 43 \)[/tex]

f) [tex]\( n^2 = 25 \)[/tex]

g) [tex]\( -\sqrt[3]{x} = -2 \)[/tex]



Answer :

Certainly! Let's solve each equation step-by-step.

a) [tex]\( 8 + y = 25 \)[/tex]

To find [tex]\( y \)[/tex], subtract 8 from both sides:
[tex]\[ y = 25 - 8 \][/tex]
[tex]\[ y = 17 \][/tex]

b) [tex]\( 2x = 82 \)[/tex]

To find [tex]\( x \)[/tex], divide both sides by 2:
[tex]\[ x = \frac{82}{2} \][/tex]
[tex]\[ x = 41 \][/tex]

c) [tex]\( 3m = -48 \)[/tex]

To find [tex]\( m \)[/tex], divide both sides by 3:
[tex]\[ m = \frac{-48}{3} \][/tex]
[tex]\[ m = -16 \][/tex]

d) [tex]\( \frac{x}{2} = 15 \)[/tex]

To find [tex]\( x \)[/tex], multiply both sides by 2:
[tex]\[ x = 15 \times 2 \][/tex]
[tex]\[ x = 30 \][/tex]

e) [tex]\( 27 + p = 43 \)[/tex]

To find [tex]\( p \)[/tex], subtract 27 from both sides:
[tex]\[ p = 43 - 27 \][/tex]
[tex]\[ p = 16 \][/tex]

f) [tex]\( n^2 = 25 \)[/tex]

To find [tex]\( n \)[/tex], take the square root of both sides. Note that there are two solutions since both positive and negative roots are possible:
[tex]\[ n = \sqrt{25} \quad \text{or} \quad n = -\sqrt{25} \][/tex]
[tex]\[ n = 5 \quad \text{or} \quad n = -5 \][/tex]

g) [tex]\( -\sqrt[3]{x} = -2 \)[/tex]

To find [tex]\( x \)[/tex], first remove the negative sign from both sides:
[tex]\[ \sqrt[3]{x} = 2 \][/tex]
Now cube both sides:
[tex]\[ x = 2^3 \][/tex]
[tex]\[ x = 8 \][/tex]
Since we removed a negative initially, we return [tex]\( x = -8 \)[/tex].

So, the solutions are:
[tex]\[ y = 17, \quad x = 41, \quad m = -16, \quad x = 30, \quad p = 16, \quad n = 5 \text{ or } -5, \quad x = -8 \][/tex]