If the area of a rectangle is [tex]12a^2 + 16ab[/tex] square units and its breadth is [tex]4a[/tex] units,

(a) Find the length of the rectangle.

(b) Write down the expression for its perimeter.

(c) Find its actual perimeter if [tex]a = 2 \, \text{cm}[/tex] and [tex]b = 4 \, \text{cm}[/tex].



Answer :

Let's go through this problem step by step.

### Part (a): Find the length of the rectangle

The area of the rectangle is given by:
[tex]\[ \text{Area} = 12a^2 + 16ab \][/tex]

The breadth of the rectangle is given by:
[tex]\[ \text{Breadth} = 4a \][/tex]

The area of a rectangle is also given by the product of its length and breadth. Therefore:
[tex]\[ \text{Area} = \text{Length} \times \text{Breadth} \][/tex]

Using the given expressions:
[tex]\[ 12a^2 + 16ab = \text{Length} \times 4a \][/tex]

To find the length, we divide both sides of the equation by [tex]\( 4a \)[/tex]:
[tex]\[ \text{Length} = \frac{12a^2 + 16ab}{4a} \][/tex]

Simplifying the right-hand side:
[tex]\[ \text{Length} = \frac{12a^2}{4a} + \frac{16ab}{4a} \][/tex]
[tex]\[ \text{Length} = 3a + 4b \][/tex]

So the length of the rectangle is:
[tex]\[ \text{Length} = 3a + 4b \][/tex]

### Part (b): Write down the expression for its perimeter

The perimeter (P) of a rectangle is given by the formula:
[tex]\[ P = 2(\text{Length} + \text{Breadth}) \][/tex]

Using the expressions we have for length and breadth:
[tex]\[ \text{Length} = 3a + 4b \][/tex]
[tex]\[ \text{Breadth} = 4a \][/tex]

So, the perimeter is:
[tex]\[ P = 2((3a + 4b) + 4a) \][/tex]
[tex]\[ P = 2(3a + 4b + 4a) \][/tex]
[tex]\[ P = 2(7a + 4b) \][/tex]

Thus, the expression for the perimeter is:
[tex]\[ P = 2(7a + 4b) \][/tex]

### Part (c): Find its actual perimeter if [tex]\( a = 2 \)[/tex] cm and [tex]\( b = 4 \)[/tex] cm

We substitute [tex]\( a = 2 \)[/tex] cm and [tex]\( b = 4 \)[/tex] cm into the perimeter expression:
[tex]\[ P = 2(7a + 4b) \][/tex]

Substituting the values:
[tex]\[ P = 2(7(2) + 4(4)) \][/tex]
[tex]\[ P = 2(14 + 16) \][/tex]
[tex]\[ P = 2(30) \][/tex]
[tex]\[ P = 60 \, \text{cm} \][/tex]

So, the actual perimeter of the rectangle is:
[tex]\[ 60 \, \text{cm} \][/tex]