Sure! Let's multiply 6[tex]\(m\)[/tex] by [tex]\(m - 3\)[/tex] step by step.
1. Expression Setup:
The expression is [tex]\(6m(m - 3)\)[/tex].
2. Distribute [tex]\(6m\)[/tex]:
We will distribute [tex]\(6m\)[/tex] to both terms inside the parentheses.
[tex]\[
6m \cdot (m) + 6m \cdot (-3)
\][/tex]
3. Multiplication:
- Multiply [tex]\(6m\)[/tex] by [tex]\(m\)[/tex]:
[tex]\[
6m \cdot m = 6m^2
\][/tex]
- Multiply [tex]\(6m\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[
6m \cdot (-3) = -18m
\][/tex]
4. Combine the Results:
Now we combine the two terms:
[tex]\[
6m^2 - 18m
\][/tex]
So, after multiplying 6[tex]\(m\)[/tex] by [tex]\(m - 3\)[/tex], we get the simplified expression: [tex]\(6m^2 - 18m\)[/tex].
However, please note that the original expression [tex]\(6m(m - 3)\)[/tex] is already in its simplified form just by distribution. Thus, whether we present it as [tex]\(6m(m - 3)\)[/tex] or [tex]\(6m^2 - 18m\)[/tex], they are equivalent.