The rate law for the following reaction,

[tex]\[2 NO (g) + 2 H_2 (g) \rightarrow N_2 (g) + 2 H_2O (g)\][/tex]

is first order in [tex]\(H_2\)[/tex] and second order in NO.

What happens to the rate when the concentrations of [tex]\(H_2\)[/tex] and NO are both doubled?

A. The rate increases by a factor of 8.
B. The rate doubles.
C. The rate increases by a factor of 16.
D. The rate increases by a factor of 4.

Submit
Request Answer



Answer :

To understand how the reaction rate changes when the concentrations of H₂ and NO are both doubled, let's break down the problem step by step.

### Given Information:
- The reaction is: [tex]\(2 \text{NO} (g) + 2 \text{H}_2 (g) \rightarrow \text{N}_2 (g) + 2 \text{H}_2\text{O} (g)\)[/tex]
- Rate law orders:
- First order in [tex]\( \text{H}_2 \)[/tex]
- Second order in [tex]\( \text{NO} \)[/tex]

### Rate Law Expression:
The rate law for this reaction can be expressed as:
[tex]\[ \text{Rate} = k [\text{H}_2]^1 [\text{NO}]^2 \][/tex]
where [tex]\( k \)[/tex] is the rate constant.

### Initial Conditions:
Let the initial concentrations of [tex]\( \text{H}_2 \)[/tex] and [tex]\( \text{NO} \)[/tex] be [tex]\( [\text{H}_2] \)[/tex] and [tex]\( [\text{NO}] \)[/tex]. The initial rate [tex]\( \text{Rate}_{\text{initial}} \)[/tex] can be written as:
[tex]\[ \text{Rate}_{\text{initial}} = k [\text{H}_2] [\text{NO}]^2 \][/tex]

### New Conditions with Doubled Concentrations:
When the concentrations of [tex]\( \text{H}_2 \)[/tex] and [tex]\( \text{NO} \)[/tex] are both doubled, the new concentrations become [tex]\( 2[\text{H}_2] \)[/tex] and [tex]\( 2[\text{NO}] \)[/tex].

The new rate [tex]\( \text{Rate}_{\text{new}} \)[/tex] with the doubled concentrations is:
[tex]\[ \text{Rate}_{\text{new}} = k (2[\text{H}_2])(2[\text{NO}])^2 \][/tex]

Expanding this, we get:
[tex]\[ \text{Rate}_{\text{new}} = k (2[\text{H}_2])(4[\text{NO}]^2) \][/tex]
[tex]\[ \text{Rate}_{\text{new}} = k (2) [\text{H}_2] (4) [\text{NO}]^2 \][/tex]
[tex]\[ \text{Rate}_{\text{new}} = 8 \cdot k [\text{H}_2] [\text{NO}]^2 \][/tex]
[tex]\[ \text{Rate}_{\text{new}} = 8 \cdot \text{Rate}_{\text{initial}} \][/tex]

### Conclusion:
When the concentrations of both [tex]\( \text{H}_2 \)[/tex] and [tex]\( \text{NO} \)[/tex] are doubled, the rate of the reaction increases by a factor of 8.

Thus, the correct answer is:
- The rate increases by a factor of 8.