1. Find the volume of a cuboid that is [tex]$4 \, m$[/tex] by [tex]$2 \, m$[/tex] by [tex][tex]$3.5 \, m$[/tex][/tex].

A. [tex]$28 \, m^3$[/tex]
B. [tex]$38 \, m^3$[/tex]
C. [tex][tex]$48 \, m^3$[/tex][/tex]
D. [tex]$24 \, m^3$[/tex]



Answer :

To determine the volume of the cuboid, follow these steps:

1. Identify the dimensions of the cuboid:
- Length [tex]\( l = 4 \, m \)[/tex]
- Width [tex]\( w = 2 \, m \)[/tex]
- Height [tex]\( h = 3.5 \, m \)[/tex]

2. Use the formula for the volume [tex]\( V \)[/tex] of a cuboid:
[tex]\[ V = \text{length} \times \text{width} \times \text{height} \][/tex]

3. Substitute the given dimensions into the formula:
[tex]\[ V = 4 \, m \times 2 \, m \times 3.5 \, m \][/tex]

4. Multiply the numbers:
[tex]\[ V = 4 \times 2 = 8 \][/tex]
[tex]\[ 8 \times 3.5 = 28 \][/tex]

5. Hence, the volume of the cuboid is [tex]\( 28 \, m^3 \)[/tex].

Therefore, the correct answer is:
a. [tex]\( 28 \, m^3 \)[/tex]