Answer :

Certainly! Let's break down the solution to find the value of [tex]\(a_n\)[/tex] for [tex]\(n=8\)[/tex].

### Step-by-Step Solution:

1. Substitute [tex]\(n = 8\)[/tex] into the sequence formula:

The given sequence formula is:
[tex]\[ a_n = \left( \frac{n}{9} - 12 \right)^n \][/tex]

Substituting [tex]\(n = 8\)[/tex]:
[tex]\[ a_8 = \left( \frac{8}{9} - 12 \right)^8 \][/tex]

2. Simplify the expression inside the parentheses:

First, we need to calculate [tex]\(\frac{8}{9} - 12\)[/tex]. Let's split this calculation into parts:

- Calculate [tex]\(\frac{8}{9}\)[/tex]:
[tex]\[ \frac{8}{9} \approx 0.8889 \][/tex]

- Subtract 12 from [tex]\(\frac{8}{9}\)[/tex]:
[tex]\[ 0.8889 - 12 = -11.1111 \][/tex]

So, the expression inside the parentheses simplifies to:
[tex]\[ -11.1111 \][/tex]

3. Raise the simplified expression to the power of 8:

Now we need to raise [tex]\(-11.1111\)[/tex] to the power of 8:
[tex]\[ a_8 = \left( -11.1111 \right)^8 \][/tex]

4. Calculate the value of [tex]\(\left( -11.1111 \right)^8\)[/tex]:

Finally, we perform the calculation:
[tex]\[ \left( -11.1111 \right)^8 \approx 232305731.25418767 \][/tex]

Therefore, the value of [tex]\(a_8\)[/tex] is:
[tex]\[ \boxed{232305731.25418767} \][/tex]