Answer :

Let's solve for the variables [tex]\(a\)[/tex] and [tex]\(b\)[/tex] in the given matrix equation:

[tex]\[ \begin{pmatrix} a & -2 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3 \\ b \end{pmatrix} = \begin{pmatrix} 16 \\ -8 \end{pmatrix} \][/tex]

We perform the matrix multiplication on the left-hand side:

[tex]\[ \begin{pmatrix} a & -2 \\ 0 & -4 \end{pmatrix} \begin{pmatrix} 3 \\ b \end{pmatrix} = \begin{pmatrix} a \cdot 3 + (-2) \cdot b \\ 0 \cdot 3 + (-4) \cdot b \end{pmatrix} = \begin{pmatrix} 3a - 2b \\ -4b \end{pmatrix} \][/tex]

Now, set this equal to the right-hand side of the given matrix equation:

[tex]\[ \begin{pmatrix} 3a - 2b \\ -4b \end{pmatrix} = \begin{pmatrix} 16 \\ -8 \end{pmatrix} \][/tex]

This gives two equations:

1. [tex]\(3a - 2b = 16\)[/tex]
2. [tex]\(-4b = -8\)[/tex]

We can solve the second equation first for [tex]\(b\)[/tex]:

[tex]\[ -4b = -8 \\ b = \frac{-8}{-4} \\ b = 2 \][/tex]

Now substitute [tex]\(b = 2\)[/tex] into the first equation:

[tex]\[ 3a - 2b = 16 \\ 3a - 2(2) = 16 \\ 3a - 4 = 16 \\ 3a = 16 + 4 \\ 3a = 20 \\ a = \frac{20}{3} \\ a = \frac{20}{3} \][/tex]

So, the solution is:

[tex]\[ a = \frac{20}{3} \quad \text{and} \quad b = 2 \][/tex]

These values satisfy both equations obtained from the matrix multiplication. Therefore, the solution is:
[tex]\[ \left(a = \frac{20}{3}, \, b = 2\right) \][/tex]