Answer :
Sure, let's simplify the given expression step-by-step.
Given:
[tex]\[ *(+14) + \{(-9) - (+7)\} \][/tex]
1. Simplify the expression inside the curly braces [tex]\(\{\ldots\}\)[/tex]:
Inside the curly braces, we have:
[tex]\[ (-9) - (+7) \][/tex]
Subtracting [tex]\(+7\)[/tex] from [tex]\(-9\)[/tex]:
[tex]\[ -9 - 7 = -16 \][/tex]
Therefore, the expression inside the curly braces simplifies to:
[tex]\[ \{ -16 \} \][/tex]
2. Substitute the simplified result of the curly braces back into the main expression:
Now, we have:
[tex]\[ * (+14) + (-16) \][/tex]
3. Recognize the [tex]\(+\)[/tex] and simplify:
We can now add [tex]\(+14\)[/tex] and [tex]\(-16\)[/tex]:
[tex]\[ +14 - 16 \][/tex]
4. Perform the addition:
Adding [tex]\(+14\)[/tex] and [tex]\(-16\)[/tex]:
[tex]\[ 14 - 16 = -2 \][/tex]
Thus, the simplified result of the given expression is:
[tex]\[ -2 \][/tex]
In conclusion:
[tex]\[ *(+14) + \{(-9) - (+7)\} = -2 \][/tex]
Given:
[tex]\[ *(+14) + \{(-9) - (+7)\} \][/tex]
1. Simplify the expression inside the curly braces [tex]\(\{\ldots\}\)[/tex]:
Inside the curly braces, we have:
[tex]\[ (-9) - (+7) \][/tex]
Subtracting [tex]\(+7\)[/tex] from [tex]\(-9\)[/tex]:
[tex]\[ -9 - 7 = -16 \][/tex]
Therefore, the expression inside the curly braces simplifies to:
[tex]\[ \{ -16 \} \][/tex]
2. Substitute the simplified result of the curly braces back into the main expression:
Now, we have:
[tex]\[ * (+14) + (-16) \][/tex]
3. Recognize the [tex]\(+\)[/tex] and simplify:
We can now add [tex]\(+14\)[/tex] and [tex]\(-16\)[/tex]:
[tex]\[ +14 - 16 \][/tex]
4. Perform the addition:
Adding [tex]\(+14\)[/tex] and [tex]\(-16\)[/tex]:
[tex]\[ 14 - 16 = -2 \][/tex]
Thus, the simplified result of the given expression is:
[tex]\[ -2 \][/tex]
In conclusion:
[tex]\[ *(+14) + \{(-9) - (+7)\} = -2 \][/tex]