Solve the system of equations.

[tex]\[
\begin{array}{l}
8x - y = 8 \\
8x^2 - y = 8
\end{array}
\][/tex]

A. [tex]\((0, 8)\)[/tex] and [tex]\((0, -8)\)[/tex]

B. [tex]\((1, 0)\)[/tex] and [tex]\((0, -8)\)[/tex]

C. [tex]\((2, 8)\)[/tex] and [tex]\((1, 0)\)[/tex]

D. [tex]\((3, 16)\)[/tex] and [tex]\((2, 24)\)[/tex]



Answer :

To solve the system of equations:
[tex]\[ \begin{cases} 8x - y = 8 \\ 8x^2 - y = 8 \end{cases} \][/tex]

we will work through each step methodically:

1. Solve the first equation for [tex]\(y\)[/tex]:

[tex]\[ 8x - y = 8 \implies y = 8x - 8 \][/tex]

2. Substitute this expression for [tex]\(y\)[/tex] into the second equation:

[tex]\[ 8x^2 - (8x - 8) = 8 \][/tex]

3. Simplify the resulting equation:

[tex]\[ 8x^2 - 8x + 8 = 8 \][/tex]

[tex]\[ 8x^2 - 8x + 8 - 8 = 0 \][/tex]

[tex]\[ 8x^2 - 8x = 0 \][/tex]

4. Factor out the common term:

[tex]\[ 8x(x - 1) = 0 \][/tex]

5. Solve for [tex]\(x\)[/tex]:

Set each factor to zero:
[tex]\[ 8x = 0 \implies x = 0 \\ x - 1 = 0 \implies x = 1 \][/tex]

6. Find the corresponding [tex]\(y\)[/tex]-values for each [tex]\(x\)[/tex]:

For [tex]\(x = 0\)[/tex]:
[tex]\[ y = 8(0) - 8 = -8 \][/tex]

So one solution is [tex]\((0, -8)\)[/tex].

For [tex]\(x = 1\)[/tex]:
[tex]\[ y = 8(1) - 8 = 0 \][/tex]

So another solution is [tex]\((1, 0)\)[/tex].

Thus, the solutions to the system of equations are:
[tex]\[ \boxed{(0, -8) \text{ and } (1, 0)} \][/tex]

Therefore, from the given options, the correct answer is:
[tex]\[ (1,0) \text{ and } (0,-8) \][/tex]