Consider the table showing the given, predicted, and residual values for a data set.

\begin{tabular}{|c|c|c|c|}
\hline
[tex]$x$[/tex] & Given & Predicted & Residual \\
\hline
1 & -1.6 & -1.2 & -0.4 \\
\hline
2 & 2.2 & 1.5 & 0.7 \\
\hline
3 & 4.5 & 4.7 & -0.2 \\
\hline
4 & 6.1 & 6.7 & -0.6 \\
\hline
\end{tabular}

Which point would be on the residual plot of the data?

A. [tex]$(1, -0.4)$[/tex]

B. [tex]$(2, 0.7)$[/tex]

C. [tex]$(3, -0.2)$[/tex]

D. [tex]$(4, -0.6)$[/tex]



Answer :

To determine which point would be on the residual plot of the data, let us first understand what a residual plot is.

A residual plot shows the residuals on the vertical axis and the corresponding independent variable (x) on the horizontal axis. The residual for each point is calculated as follows:

[tex]\[ \text{Residual} = \text{Given Value} - \text{Predicted Value} \][/tex]

Given the table:

[tex]\[ \begin{tabular}{|c|c|c|c|} \hline $x$ & Given & Predicted & Residual \\ \hline 1 & -1.6 & -1.2 & -0.4 \\ \hline 2 & 2.2 & 1.5 & 0.7 \\ \hline 3 & 4.5 & 4.7 & -0.2 \\ \hline 4 & 6.1 & 6.7 & -0.6 \\ \hline \end{tabular} \][/tex]

We identified that the residual plot consists of points in the form [tex]\((x, \text{Residual})\)[/tex]. Analyzing each point given in the options:

1. [tex]\((1, -1.6)\)[/tex]: This point does not represent the format [tex]\((x, \text{Residual})\)[/tex]. Instead, it seems to mix the dataset's given value with [tex]\(x\)[/tex].
2. [tex]\((2, 1.5)\)[/tex]: This point uses the predicted value instead of the residual. Therefore, it is not correct.
3. [tex]\((3, 4.5)\)[/tex]: This point uses the given value instead of the residual. It does not fit the residual plot format.
4. [tex]\((4, -0.6)\)[/tex]: This point correctly represents the [tex]\(x\)[/tex] value and the corresponding residual from the table.

Thus, the correct point that would be on the residual plot of the data is:

[tex]\[ (4, -0.6) \][/tex]