A triangle has side lengths of [tex]$6x + 10y$[/tex] centimeters, [tex]$8x - 9z$[/tex] centimeters, and [tex][tex]$4z - 7y$[/tex][/tex] centimeters. Which expression represents the perimeter, in centimeters, of the triangle?

A. [tex]-5z + 3y + 14x[/tex]
B. [tex]-3yz + 16xy - xz[/tex]
C. [tex]14y + 14x - 16z[/tex]
D. [tex]-6yz + 18xz[/tex]

Submit Answer



Answer :

To find the perimeter of a triangle when its side lengths are given, you simply add up the expressions for each of the three sides.

Given the expressions for the side lengths:
1. [tex]\(6x + 10y\)[/tex] centimeters
2. [tex]\(8x - 9z\)[/tex] centimeters
3. [tex]\(4z - 7y\)[/tex] centimeters

We will add these expressions together to find the perimeter:

[tex]\[ \text{Perimeter} = (6x + 10y) + (8x - 9z) + (4z - 7y) \][/tex]

Now, let's combine like terms:

1. Combine the [tex]\(x\)[/tex] terms:
[tex]\[ 6x + 8x = 14x \][/tex]

2. Combine the [tex]\(y\)[/tex] terms:
[tex]\[ 10y - 7y = 3y \][/tex]

3. Combine the [tex]\(z\)[/tex] terms:
[tex]\[ -9z + 4z = -5z \][/tex]

Putting it all together, the perimeter of the triangle is:

[tex]\[ 14x + 3y - 5z \][/tex]

Therefore, the expression that represents the perimeter, in centimeters, of the triangle is:

[tex]\[ 14x + 3y - 5z \][/tex]

Among the given multiple-choice options, the correct answer is:

[tex]\[ \boxed{14x + 3y - 5z} \][/tex]