Answered

The chart below shows a production possibility schedule for a pastry shop that makes [tex]\$0.50[/tex] profit per donut and [tex]\$0.75[/tex] profit per bagel.

\begin{tabular}{|l|l|l|}
\hline
Choice & \begin{tabular}{l}
Quantity of \\
Donuts
\end{tabular} & \begin{tabular}{l}
Quantity of \\
Bagels
\end{tabular} \\
\hline
A & 600 & 70 \\
\hline
B & 500 & 140 \\
\hline
C & 500 & 40 \\
\hline
\end{tabular}

Which choice yields the largest profit?



Answer :

To find which choice yields the largest profit, follow these steps:

1. Identify the given data:
- The profit per donut is \[tex]$0.50. - The profit per bagel is \$[/tex]0.75.
- The quantities for each choice are:
- Choice A: 600 donuts and 70 bagels.
- Choice B: 500 donuts and 140 bagels.
- Choice C: 500 donuts and 40 bagels.

2. Calculate the profit for each choice:

- Choice A:
- Profit from donuts: [tex]\( 600 \text{ donuts} \times \$0.50 = \$300 \)[/tex]
- Profit from bagels: [tex]\( 70 \text{ bagels} \times \$0.75 = \$52.5 \)[/tex]
- Total Profit: [tex]\( \$300 + \$52.5 = \$352.5 \)[/tex]

- Choice B:
- Profit from donuts: [tex]\( 500 \text{ donuts} \times \$0.50 = \$250 \)[/tex]
- Profit from bagels: [tex]\( 140 \text{ bagels} \times \$0.75 = \$105 \)[/tex]
- Total Profit: [tex]\( \$250 + \$105 = \$355 \)[/tex]

- Choice C:
- Profit from donuts: [tex]\( 500 \text{ donuts} \times \$0.50 = \$250 \)[/tex]
- Profit from bagels: [tex]\( 40 \text{ bagels} \times \$0.75 = \$30 \)[/tex]
- Total Profit: [tex]\( \$250 + \$30 = \$280 \)[/tex]

3. Compare the total profits for each choice:
- Profit for Choice A: \[tex]$352.5 - Profit for Choice B: \$[/tex]355
- Profit for Choice C: \[tex]$280 4. Determine the choice with the maximum profit: - Choice A: \$[/tex]352.5
- Choice B: \[tex]$355 - Choice C: \$[/tex]280

Therefore, the choice that yields the largest profit is Choice B with a profit of \$355.