Now,

[tex]\[ \begin{aligned}
a - b & = \sqrt{(a + b)^2 - 4ab} \\
& = \sqrt{(50)^2 - 4 \cdot 400} \\
& = \sqrt{2500 - 1600} \\
& = \sqrt{900} \\
& = \sqrt{30^2} \\
& = 30
\end{aligned} \][/tex]



Answer :

Sure, let's break the problem down step-by-step to see how we arrived at the value for [tex]\( a - b \)[/tex].

We are given:
- [tex]\( a + b = 50 \)[/tex]
- [tex]\( ab = 400 \)[/tex]

We need to find [tex]\( a - b \)[/tex].

To achieve this, we can use the formula:
[tex]\[ a - b = \sqrt{(a + b)^2 - 4ab} \][/tex]

Let's substitute the given values into the formula:

1. Plug in [tex]\( a + b \)[/tex] and [tex]\( ab \)[/tex]:

[tex]\[ a - b = \sqrt{(50)^2 - 4 \cdot 400} \][/tex]

2. Compute the square and product:

[tex]\[ a - b = \sqrt{2500 - 1600} \][/tex]

3. Subtract the quantities under the square root:

[tex]\[ a - b = \sqrt{900} \][/tex]

4. Take the square root of the remaining value:

[tex]\[ a - b = \sqrt{30^2} \][/tex]

5. Simplify the square root to get the final result:

[tex]\[ a - b = 30 \][/tex]

Thus, [tex]\( a - b = 30 \)[/tex].