To find [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex], we need to establish a relationship between [tex]\( y \)[/tex], [tex]\( m \)[/tex], and [tex]\( n \)[/tex]. Given:
[tex]\[ m = 2x + 3 \][/tex]
[tex]\[ n = x - 1 \][/tex]
We can assume that [tex]\( y \)[/tex] is the sum of [tex]\( m \)[/tex] and [tex]\( n \)[/tex]:
[tex]\[ y = m + n \][/tex]
Let's substitute the expressions for [tex]\( m \)[/tex] and [tex]\( n \)[/tex] into the equation for [tex]\( y \)[/tex]:
[tex]\[ y = (2x + 3) + (x - 1) \][/tex]
Now, combine the like terms:
[tex]\[ y = 2x + x + 3 - 1 \][/tex]
[tex]\[ y = 3x + 2 \][/tex]
Thus, the simplest form of [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] is:
[tex]\[ y = 3x + 2 \][/tex]