iii) Given [tex]$m = 2x + 3$[/tex] and [tex]$n = x - 1$[/tex],

Find [tex][tex]$y$[/tex][/tex] in terms of [tex]$x$[/tex], in its simplest form.



Answer :

To find [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex], we need to establish a relationship between [tex]\( y \)[/tex], [tex]\( m \)[/tex], and [tex]\( n \)[/tex]. Given:

[tex]\[ m = 2x + 3 \][/tex]
[tex]\[ n = x - 1 \][/tex]

We can assume that [tex]\( y \)[/tex] is the sum of [tex]\( m \)[/tex] and [tex]\( n \)[/tex]:
[tex]\[ y = m + n \][/tex]

Let's substitute the expressions for [tex]\( m \)[/tex] and [tex]\( n \)[/tex] into the equation for [tex]\( y \)[/tex]:

[tex]\[ y = (2x + 3) + (x - 1) \][/tex]

Now, combine the like terms:

[tex]\[ y = 2x + x + 3 - 1 \][/tex]
[tex]\[ y = 3x + 2 \][/tex]

Thus, the simplest form of [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] is:

[tex]\[ y = 3x + 2 \][/tex]