Consider the function represented by the equation [tex]x - y = 3[/tex]. What is the equation written in function notation, with [tex]\( x \)[/tex] as the independent variable?

A. [tex]f(x) = y + 3[/tex]
B. [tex]f(x) = -y - 3[/tex]
C. [tex]f(x) = -x + 3[/tex]
D. [tex]f(x) = x - 3[/tex]



Answer :

Let's start with the equation given:

[tex]\[ x - y = 3 \][/tex]

We need to rewrite this equation in function notation where [tex]\( y \)[/tex] is expressed as a function of [tex]\( x \)[/tex], i.e., [tex]\( y = f(x) \)[/tex].

First, we isolate [tex]\( y \)[/tex] on one side of the equation.

1. Subtract [tex]\( x \)[/tex] from both sides of the equation:

[tex]\[ -y = 3 - x \][/tex]

2. Multiply both sides by -1 to solve for [tex]\( y \)[/tex]:

[tex]\[ y = x - 3 \][/tex]

Thus, the function notation for this equation is:

[tex]\[ f(x) = x - 3 \][/tex]

Among the given options, the correct one is:

[tex]\[ f(x) = x - 3 \][/tex]

Therefore, the correct answer is the 4th option:

[tex]\[ f(x) = x - 3 \][/tex]