Answer :

To solve for [tex]\(\int_2^5 3g(x) \, dx\)[/tex], let's proceed step-by-step using the given integrals:

1. We know [tex]\(\int_2^6 g(x) \, dx = 12\)[/tex].
2. We also know [tex]\(\int_5^6 g(x) \, dx = -3\)[/tex].

By the properties of definite integrals, we can break the integral of [tex]\(g(x)\)[/tex] over the interval from 2 to 6 into two pieces:
[tex]\[ \int_2^6 g(x) \, dx = \int_2^5 g(x) \, dx + \int_5^6 g(x) \, dx \][/tex]

Substituting the given values, we get:
[tex]\[ 12 = \int_2^5 g(x) \, dx + (-3) \][/tex]

Solving for [tex]\(\int_2^5 g(x) \, dx\)[/tex], we add 3 to both sides:
[tex]\[ 12 + 3 = \int_2^5 g(x) \, dx \][/tex]
[tex]\[ \int_2^5 g(x) \, dx = 15 \][/tex]

Next, we need to find [tex]\(\int_2^5 3g(x) \, dx\)[/tex]. By the linearity property of integrals, we can factor out the constant 3:
[tex]\[ \int_2^5 3g(x) \, dx = 3 \int_2^5 g(x) \, dx \][/tex]

Substituting the value of [tex]\(\int_2^5 g(x) \, dx\)[/tex]:
[tex]\[ \int_2^5 3g(x) \, dx = 3 \times 15 \][/tex]
[tex]\[ \int_2^5 3g(x) \, dx = 45 \][/tex]

Thus, the value of [tex]\(\int_2^5 3g(x) \, dx\)[/tex] is 45.