Select the correct answer.

Simplify the following expression:
[tex]\[ x^{\frac{1}{3}} \cdot x^{\frac{1}{6}} \][/tex]

A. [tex]\[ x^{\frac{1}{15}} \][/tex]

B. [tex]\[ x^{\frac{2}{15}} \][/tex]

C. [tex]\[ x^{15} \][/tex]

D. [tex]\[ x^{\frac{8}{16}} \][/tex]



Answer :

To simplify the expression [tex]\( x^{\frac{1}{3}} \cdot x^{\frac{1}{6}} \)[/tex], we need to use the properties of exponents. Specifically, when multiplying expressions with the same base, we add the exponents:

[tex]\[ x^a \cdot x^b = x^{a+b} \][/tex]

Here, the exponents are [tex]\(\frac{1}{3}\)[/tex] and [tex]\(\frac{1}{6}\)[/tex]. Therefore, we need to add these exponents together:

[tex]\[ \frac{1}{3} + \frac{1}{6} \][/tex]

To add these fractions, we need a common denominator. The least common denominator of 3 and 6 is 6. So, we convert [tex]\(\frac{1}{3}\)[/tex] to an equivalent fraction with a denominator of 6:

[tex]\[ \frac{1}{3} = \frac{2}{6} \][/tex]

Now we add:

[tex]\[ \frac{2}{6} + \frac{1}{6} = \frac{3}{6} \][/tex]

Simplifying [tex]\(\frac{3}{6}\)[/tex] gives us [tex]\(\frac{1}{2}\)[/tex]. Thus:

[tex]\[ x^{\frac{1}{3}} \cdot x^{\frac{1}{6}} = x^{\frac{1}{2}} \][/tex]

Rewriting the final result, we have:

[tex]\[ x^{\frac{1}{2}} \][/tex]

Therefore, the correct answer is not explicitly listed in the provided options, but the closest equivalent through simplification will be [tex]\(x^{\frac{8}{16}}\)[/tex] since [tex]\(\frac{8}{16}\)[/tex] simplifies to [tex]\(\frac{1}{2}\)[/tex]. Hence the correct answer among the options is:

D. [tex]\( x^{\frac{8}{16}} \)[/tex]