Which choice is equivalent to the product below?

[tex]\[
\sqrt{14} \cdot \sqrt{8}
\][/tex]

A. [tex]\(4 \sqrt{7}\)[/tex]
B. [tex]\(4 \sqrt{28}\)[/tex]
C. [tex]\(16 \sqrt{7}\)[/tex]
D. 28



Answer :

To find the equivalent expression to [tex]\(\sqrt{14} \cdot \sqrt{8}\)[/tex], let’s break it down step by step following mathematical principles.

1. Combine the square roots:
We start with the product of the square roots:
[tex]\[ \sqrt{14} \cdot \sqrt{8} \][/tex]

2. Use the property of square roots:
The property of square roots tells us that the product of two square roots is equal to the square root of the product:
[tex]\[ \sqrt{14} \cdot \sqrt{8} = \sqrt{14 \cdot 8} \][/tex]

3. Multiply the numbers inside the square root:
Now, we calculate the product of the numbers inside the square root:
[tex]\[ 14 \cdot 8 = 112 \][/tex]
So, we have:
[tex]\[ \sqrt{14} \cdot \sqrt{8} = \sqrt{112} \][/tex]

4. Simplify the square root:
To simplify [tex]\(\sqrt{112}\)[/tex], we can factorize 112 into its prime factors:
[tex]\[ 112 = 16 \cdot 7 \][/tex]
Therefore:
[tex]\[ \sqrt{112} = \sqrt{16 \cdot 7} \][/tex]

5. Use the property of square roots again:
The square root of a product can be expressed as the product of the square roots:
[tex]\[ \sqrt{16 \cdot 7} = \sqrt{16} \cdot \sqrt{7} \][/tex]
Knowing that [tex]\(\sqrt{16} = 4\)[/tex], we get:
[tex]\[ \sqrt{112} = 4 \cdot \sqrt{7} \][/tex]

Hence, the product [tex]\(\sqrt{14} \cdot \sqrt{8}\)[/tex] simplifies to [tex]\(4 \sqrt{7}\)[/tex].

Therefore, the equivalent choice is:

A. [tex]\(4 \sqrt{7}\)[/tex].