Select the correct answer.

The endpoints of [tex]\overline{GH}[/tex] are [tex]\( G (14, 3) \)[/tex] and [tex]\( H (10, -6) \)[/tex]. What is the midpoint of [tex]\overline{GH}[/tex]?

A. [tex]\( (6, -15) \)[/tex]

B. [tex]\( \left(-2, -\frac{9}{2}\right) \)[/tex]

C. [tex]\( \left(12, -\frac{3}{2}\right) \)[/tex]

D. [tex]\( (24, -3) \)[/tex]

E. [tex]\( (18, 12) \)[/tex]



Answer :

To find the midpoint of a line segment with given endpoints, you can use the midpoint formula. The midpoint formula is:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are the coordinates of the endpoints. For the endpoints [tex]\(G(14,3)\)[/tex] and [tex]\(H(10,-6)\)[/tex], we have:

1. Identify the [tex]\(x\)[/tex]-coordinates of [tex]\(G\)[/tex] and [tex]\(H\)[/tex]:
- [tex]\(x_1 = 14\)[/tex]
- [tex]\(x_2 = 10\)[/tex]

2. Identify the [tex]\(y\)[/tex]-coordinates of [tex]\(G\)[/tex] and [tex]\(H\)[/tex]:
- [tex]\(y_1 = 3\)[/tex]
- [tex]\(y_2 = -6\)[/tex]

3. Apply the coordinates to the midpoint formula:
- Midpoint [tex]\(x\)[/tex]-coordinate: [tex]\(\frac{x_1 + x_2}{2} = \frac{14 + 10}{2} = \frac{24}{2} = 12\)[/tex]
- Midpoint [tex]\(y\)[/tex]-coordinate: [tex]\(\frac{y_1 + y_2}{2} = \frac{3 + (-6)}{2} = \frac{3 - 6}{2} = \frac{-3}{2} = -1.5\)[/tex]

Therefore, the midpoint of [tex]\(\overline{GH}\)[/tex] is:

[tex]\[ \left( 12, -\frac{3}{2} \right) \][/tex]

Given the answer choices:

A. [tex]\((6, -15)\)[/tex]

B. [tex]\(\left( -2, -\frac{9}{2} \right)\)[/tex]

C. [tex]\(\left( 12, -\frac{3}{2} \right)\)[/tex]

D. [tex]\((24, -3)\)[/tex]

E. [tex]\((18, 12)\)[/tex]

The correct answer is:

C. [tex]\(\left( 12, -\frac{3}{2} \right)\)[/tex]