Answer :
To find the equation of the line that passes through the origin and is parallel to the line passing through points [tex]\( A(-3, 0) \)[/tex] and [tex]\( B(-6, 5) \)[/tex], we need to follow these steps:
1. Find the slope of the line passing through points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
The slope [tex]\( m \)[/tex] of the line through the points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For points [tex]\( A(-3, 0) \)[/tex] and [tex]\( B(-6, 5) \)[/tex]:
[tex]\[ m = \frac{5 - 0}{-6 - (-3)} = \frac{5}{-6 + 3} = \frac{5}{-3} = -\frac{5}{3} \][/tex]
2. Write the equation of the line passing through the origin with the same slope [tex]\( m \)[/tex]:
The general form of a line with slope [tex]\( m \)[/tex] passing through the origin [tex]\((0,0)\)[/tex] is:
[tex]\[ y = mx \][/tex]
Substituting [tex]\( m = -\frac{5}{3} \)[/tex]:
[tex]\[ y = -\frac{5}{3} x \][/tex]
3. Convert this equation to the standard form [tex]\( Ax + By = 0 \)[/tex]:
[tex]\[ y = -\frac{5}{3} x \quad \Rightarrow \quad 3y = -5x \quad \Rightarrow \quad 5x + 3y = 0 \][/tex]
To ensure it matches one of the choices given, rewrite it:
[tex]\[ -5x - 3y = 0 \][/tex]
4. Compare with the provided choices:
- A. [tex]\( 5x - 3y = 0 \)[/tex]
- B. [tex]\( -x + 3y = 0 \)[/tex]
- C. [tex]\( -5x - 3y = 0 \)[/tex]
- D. [tex]\( 3x + 5y = 0 \)[/tex]
- E. [tex]\( -3x + 5y = 0 \)[/tex]
Clearly, the equation [tex]\( -5x - 3y = 0 \)[/tex] matches choice [tex]\(\text{C.}\)[/tex]
So, the equation of the line that passes through the origin and is parallel to line [tex]\( AB \)[/tex] is:
C. [tex]\( -5x - 3y = 0 \)[/tex]
1. Find the slope of the line passing through points [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
The slope [tex]\( m \)[/tex] of the line through the points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For points [tex]\( A(-3, 0) \)[/tex] and [tex]\( B(-6, 5) \)[/tex]:
[tex]\[ m = \frac{5 - 0}{-6 - (-3)} = \frac{5}{-6 + 3} = \frac{5}{-3} = -\frac{5}{3} \][/tex]
2. Write the equation of the line passing through the origin with the same slope [tex]\( m \)[/tex]:
The general form of a line with slope [tex]\( m \)[/tex] passing through the origin [tex]\((0,0)\)[/tex] is:
[tex]\[ y = mx \][/tex]
Substituting [tex]\( m = -\frac{5}{3} \)[/tex]:
[tex]\[ y = -\frac{5}{3} x \][/tex]
3. Convert this equation to the standard form [tex]\( Ax + By = 0 \)[/tex]:
[tex]\[ y = -\frac{5}{3} x \quad \Rightarrow \quad 3y = -5x \quad \Rightarrow \quad 5x + 3y = 0 \][/tex]
To ensure it matches one of the choices given, rewrite it:
[tex]\[ -5x - 3y = 0 \][/tex]
4. Compare with the provided choices:
- A. [tex]\( 5x - 3y = 0 \)[/tex]
- B. [tex]\( -x + 3y = 0 \)[/tex]
- C. [tex]\( -5x - 3y = 0 \)[/tex]
- D. [tex]\( 3x + 5y = 0 \)[/tex]
- E. [tex]\( -3x + 5y = 0 \)[/tex]
Clearly, the equation [tex]\( -5x - 3y = 0 \)[/tex] matches choice [tex]\(\text{C.}\)[/tex]
So, the equation of the line that passes through the origin and is parallel to line [tex]\( AB \)[/tex] is:
C. [tex]\( -5x - 3y = 0 \)[/tex]
Answer:
C. -5x - 3y = 0
Step-by-step explanation:
Given:
- A(-3, 0) = A([tex]x_1, y_1[/tex])
- B(-6, 5) = B([tex]x_2, y_2[/tex])
Firstly, find the slope of the line passing through points AB using the formula:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Substituting the values we get:
[tex]m = \frac{5 - 0}{-6 - (-3)}[/tex]
[tex]m = \frac{5}{-6 + 3}[/tex]
[tex]m = \frac{5}{-3}[/tex]
Write the equation of the line passing through the origin with the same slope:
[tex]y=mx[/tex]
[tex]\boxed{\text{\textbf{Note}: from previous, m = $\frac{5}{-3}$}}[/tex]
[tex]y=\frac{5}{-3}x[/tex]
[tex]y=\frac{5x}{-3}[/tex]
Cross-multiply
[tex]-3y=5x[/tex]
Move all terms to the LHS or RHS
[tex]-5x -3y=0[/tex]
[tex]5x + 3y = 0[/tex]
Therefore, the equation of the line that passes through the origin and is parallel to line AB is:
- C. -5x - 3y = 0