Which choices are equivalent to the expression below? Check all that apply.

[tex]\[4 \sqrt{3}\][/tex]

A. [tex]\(\sqrt{48}\)[/tex]

B. [tex]\(\sqrt{24} \cdot \sqrt{2}\)[/tex]

C. [tex]\(3 \sqrt{16}\)[/tex]

D. [tex]\(\sqrt{4} \cdot \sqrt{3}\)[/tex]

E. [tex]\(\sqrt{12} \cdot \sqrt{4}\)[/tex]

F. 48



Answer :

Given the expression [tex]\(4 \sqrt{3}\)[/tex], we need to identify which choices are equivalent to this expression.

Let's examine each choice one by one:

Choice A: [tex]\(\sqrt{48}\)[/tex]

To determine if this is equivalent to [tex]\(4 \sqrt{3}\)[/tex]:
[tex]\[ \sqrt{48} = \sqrt{16 \times 3} = \sqrt{16} \times \sqrt{3} = 4 \sqrt{3} \][/tex]
Thus, [tex]\(\sqrt{48}\)[/tex] is indeed equivalent to [tex]\(4 \sqrt{3}\)[/tex].

Choice B: [tex]\(\sqrt{24} \bullet \sqrt{2}\)[/tex]

To determine if this is equivalent to [tex]\(4 \sqrt{3}\)[/tex]:
[tex]\[ \sqrt{24} \times \sqrt{2} = \sqrt{24 \times 2} = \sqrt{48} \][/tex]
We have already determined that [tex]\(\sqrt{48} = 4 \sqrt{3}\)[/tex].

Thus, [tex]\(\sqrt{24} \bullet \sqrt{2}\)[/tex] is indeed equivalent to [tex]\(4 \sqrt{3}\)[/tex].

Choice C: [tex]\(3 \sqrt{16}\)[/tex]

To determine if this is equivalent to [tex]\(4 \sqrt{3}\)[/tex]:
[tex]\[ 3 \sqrt{16} = 3 \times 4 = 12 \][/tex]
Clearly, [tex]\(12\)[/tex] is not equivalent to [tex]\(4 \sqrt{3}\)[/tex].

Thus, [tex]\(3 \sqrt{16}\)[/tex] is not equivalent to [tex]\(4 \sqrt{3}\)[/tex].

Choice D: [tex]\(\sqrt{4} \bullet \sqrt{3}\)[/tex]

To determine if this is equivalent to [tex]\(4 \sqrt{3}\)[/tex]:
[tex]\[ \sqrt{4} \times \sqrt{3} = \sqrt{4 \times 3} = \sqrt{12} \][/tex]
[tex]\(\sqrt{12}\)[/tex] does not simplify to [tex]\(4 \sqrt{3}\)[/tex], but rather [tex]\(2 \sqrt{3}\)[/tex].

Thus, [tex]\(\sqrt{4} \bullet \sqrt{3}\)[/tex] is not equivalent to [tex]\(4 \sqrt{3}\)[/tex].

Choice E: [tex]\(\sqrt{12} \bullet \sqrt{4}\)[/tex]

To determine if this is equivalent to [tex]\(4 \sqrt{3}\)[/tex]:
[tex]\[ \sqrt{12} \times \sqrt{4} = \sqrt{12 \times 4} = \sqrt{48} \][/tex]
We have already determined that [tex]\(\sqrt{48} = 4 \sqrt{3}\)[/tex].

Thus, [tex]\(\sqrt{12} \bullet \sqrt{4}\)[/tex] is indeed equivalent to [tex]\(4 \sqrt{3}\)[/tex].

Choice F: 48

48 is a numerical value and not in a radical form related to [tex]\(4 \sqrt{3}\)[/tex]. It does not make mathematical sense in this context.

Thus, 48 is not equivalent to [tex]\(4 \sqrt{3}\)[/tex].

In summary:

The equivalent choices to [tex]\(4 \sqrt{3}\)[/tex] are:
- A. [tex]\(\sqrt{48}\)[/tex]
- B. [tex]\(\sqrt{24} \bullet \sqrt{2}\)[/tex]
- E. [tex]\(\sqrt{12} \bullet \sqrt{4}\)[/tex]

Therefore, the correct answers are A, B, and E.