Select the correct answer.

Simplify: [tex]\left(3x^2 - 4x + 6\right) + \left(7x - 2\right)[/tex]

A. [tex]3x^2 - 11x - 8[/tex]
B. [tex]3x^2 + 3x + 4[/tex]
C. [tex]3x^2 + 11x + 4[/tex]
D. [tex]10x^2 - 6x + 6[/tex]



Answer :

Sure, let's go through the process of simplifying the given expression step by step.

We need to simplify:
[tex]\[ \left(3x^2 - 4x + 6\right) + \left(7x - 2\right) \][/tex]

Step 1: Remove the parentheses and write all the terms together.
[tex]\[ 3x^2 - 4x + 6 + 7x - 2 \][/tex]

Step 2: Combine like terms. Like terms are terms that have the same variable raised to the same power.

First, let's handle the [tex]\(x^2\)[/tex] terms:
[tex]\[ 3x^2 \][/tex]

Next, combine the [tex]\(x\)[/tex] terms:
[tex]\[ -4x + 7x = 3x \][/tex]

Finally, combine the constant terms:
[tex]\[ 6 - 2 = 4 \][/tex]

Step 3: Now, putting it all together, we get:
[tex]\[ 3x^2 + 3x + 4 \][/tex]

So, the simplified expression is:
[tex]\[ 3x^2 + 3x + 4 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{B} \][/tex]

The correct choice is B: [tex]\( 3x^2 + 3x + 4 \)[/tex].