Select the correct answer.

Find the product.

[tex]\[
(p+5)(p-2)
\][/tex]

A. [tex]\( p^2 + 3p - 10 \)[/tex]

B. [tex]\( p^2 - 10 \)[/tex]

C. [tex]\( p^2 + 7p - 10 \)[/tex]

D. [tex]\( p^2 - 3p \)[/tex]



Answer :

To find the product [tex]\((p + 5)(p - 2)\)[/tex], we need to use the distributive property, also known as the FOIL method (First, Outer, Inner, Last):

1. First: Multiply the first terms in each binomial:
[tex]\( p \cdot p = p^2 \)[/tex]

2. Outer: Multiply the outer terms in the binomials:
[tex]\( p \cdot (-2) = -2p \)[/tex]

3. Inner: Multiply the inner terms in the binomials:
[tex]\( 5 \cdot p = 5p \)[/tex]

4. Last: Multiply the last terms in each binomial:
[tex]\( 5 \cdot (-2) = -10 \)[/tex]

Next, add up all these products to get the expanded form:
[tex]\[ p^2 + (-2p) + 5p + (-10) \][/tex]

Combine the like terms:
[tex]\[ p^2 + 3p - 10 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{p^2 + 3p - 10} \][/tex]

So, the correct choice is:
A. [tex]\(p^2 + 3p - 10\)[/tex]