Answer :
Let's simplify each polynomial step-by-step and then classify them accordingly.
### Polynomial 1:
Given:
[tex]\[ \left(x - \frac{1}{2}\right)(6x + 2) \][/tex]
First, expand the polynomial using the distributive property:
[tex]\[ (x - \frac{1}{2}) \cdot (6x + 2) = x \cdot 6x + x \cdot 2 - \frac{1}{2} \cdot 6x - \frac{1}{2} \cdot 2 \][/tex]
[tex]\[ = 6x^2 + 2x - 3x - 1 \][/tex]
[tex]\[ = 6x^2 - x - 1 \][/tex]
This is a quadratic polynomial with 3 terms.
### Polynomial 2:
Given:
[tex]\[ \left(7x^2 + 3x\right) - \frac{1}{3}\left(21x^2 - 12\right) \][/tex]
First, simplify the second term:
[tex]\[ \frac{1}{3}(21x^2 - 12) = 7x^2 - 4 \][/tex]
Now combine the terms:
[tex]\[ 7x^2 + 3x - (7x^2 - 4) \][/tex]
[tex]\[ = 7x^2 + 3x - 7x^2 + 4 \][/tex]
[tex]\[ = 3x + 4 \][/tex]
This is a linear polynomial with 2 terms.
### Polynomial 3:
Given:
[tex]\[ 4\left(5x^2 - 9x + 7\right) + 2\left(-10x^2 + 18x - 13\right) \][/tex]
Expand both terms separately:
[tex]\[ 4(5x^2 - 9x + 7) = 20x^2 - 36x + 28 \][/tex]
[tex]\[ 2(-10x^2 + 18x - 13) = -20x^2 + 36x - 26 \][/tex]
Now combine the terms:
[tex]\[ (20x^2 - 36x + 28) + (-20x^2 + 36x - 26) \][/tex]
[tex]\[ = 20x^2 - 20x^2 - 36x + 36x + 28 - 26 \][/tex]
[tex]\[ = 2 \][/tex]
This is a constant polynomial with 1 term (monomial).
### Final classification:
Putting all the information into the table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline Polynomial & Simplified Form & \begin{tabular}{c} Name by \\ Degree \end{tabular} & \begin{tabular}{c} Name by \\ Number of Terms \end{tabular} \\ \hline 1 & $6x^2 - x - 1$ & quadratic & trinomial \\ \hline 2 & $3x + 4$ & linear & binomial \\ \hline 3 & $2$ & constant & monomial \\ \hline \end{tabular} \][/tex]
### Polynomial 1:
Given:
[tex]\[ \left(x - \frac{1}{2}\right)(6x + 2) \][/tex]
First, expand the polynomial using the distributive property:
[tex]\[ (x - \frac{1}{2}) \cdot (6x + 2) = x \cdot 6x + x \cdot 2 - \frac{1}{2} \cdot 6x - \frac{1}{2} \cdot 2 \][/tex]
[tex]\[ = 6x^2 + 2x - 3x - 1 \][/tex]
[tex]\[ = 6x^2 - x - 1 \][/tex]
This is a quadratic polynomial with 3 terms.
### Polynomial 2:
Given:
[tex]\[ \left(7x^2 + 3x\right) - \frac{1}{3}\left(21x^2 - 12\right) \][/tex]
First, simplify the second term:
[tex]\[ \frac{1}{3}(21x^2 - 12) = 7x^2 - 4 \][/tex]
Now combine the terms:
[tex]\[ 7x^2 + 3x - (7x^2 - 4) \][/tex]
[tex]\[ = 7x^2 + 3x - 7x^2 + 4 \][/tex]
[tex]\[ = 3x + 4 \][/tex]
This is a linear polynomial with 2 terms.
### Polynomial 3:
Given:
[tex]\[ 4\left(5x^2 - 9x + 7\right) + 2\left(-10x^2 + 18x - 13\right) \][/tex]
Expand both terms separately:
[tex]\[ 4(5x^2 - 9x + 7) = 20x^2 - 36x + 28 \][/tex]
[tex]\[ 2(-10x^2 + 18x - 13) = -20x^2 + 36x - 26 \][/tex]
Now combine the terms:
[tex]\[ (20x^2 - 36x + 28) + (-20x^2 + 36x - 26) \][/tex]
[tex]\[ = 20x^2 - 20x^2 - 36x + 36x + 28 - 26 \][/tex]
[tex]\[ = 2 \][/tex]
This is a constant polynomial with 1 term (monomial).
### Final classification:
Putting all the information into the table:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline Polynomial & Simplified Form & \begin{tabular}{c} Name by \\ Degree \end{tabular} & \begin{tabular}{c} Name by \\ Number of Terms \end{tabular} \\ \hline 1 & $6x^2 - x - 1$ & quadratic & trinomial \\ \hline 2 & $3x + 4$ & linear & binomial \\ \hline 3 & $2$ & constant & monomial \\ \hline \end{tabular} \][/tex]