Which choice is equivalent to the product below for acceptable values of [tex]$x$[/tex]?

[tex] \sqrt{x+3} \cdot \sqrt{x-3} [/tex]

A. [tex] \sqrt{x^2} [/tex]

B. [tex] \sqrt{x^2+9} [/tex]

C. [tex] x [/tex]

D. [tex] \sqrt{x^2-9} [/tex]



Answer :

To determine which of the given choices is equivalent to the product [tex]\(\sqrt{x+3} \cdot \sqrt{x-3}\)[/tex], let's go through the simplification process step-by-step.

1. Understand the product of square roots:

[tex]\[ \sqrt{x+3} \cdot \sqrt{x-3} \][/tex]

2. Use the property of square roots:
The property of square roots that is useful here is:

[tex]\[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \][/tex]

Applying this property:

[tex]\[ \sqrt{x+3} \cdot \sqrt{x-3} = \sqrt{(x+3)(x-3)} \][/tex]

3. Simplify the expression inside the square root:
We need to simplify the expression [tex]\((x+3)(x-3)\)[/tex]. This is a difference of squares:

[tex]\[ (x+3)(x-3) = x^2 - 9 \][/tex]

4. Write the simplified form:
Now, substituting back, we have:

[tex]\[ \sqrt{(x+3)(x-3)} = \sqrt{x^2 - 9} \][/tex]

So, the product [tex]\(\sqrt{x+3} \cdot \sqrt{x-3}\)[/tex] simplifies to [tex]\(\sqrt{x^2 - 9}\)[/tex].

5. Determine the correct choice:
Among the choices given:

A. [tex]\(\sqrt{x^2}\)[/tex]
B. [tex]\(\sqrt{x^2 + 9}\)[/tex]
C. [tex]\(x\)[/tex]
D. [tex]\(\sqrt{x^2 - 9}\)[/tex]

The expression [tex]\(\sqrt{x^2 - 9}\)[/tex] matches choice D.

Therefore, the correct answer is:

[tex]\[ \boxed{4} \][/tex]