Which inequality represents all values of [tex]$x$[/tex] for which the product below is defined?

[tex]\sqrt{5x} \cdot \sqrt{x+4}[/tex]

A. [tex]$x \ \textgreater \ 0$[/tex]
B. [tex][tex]$x \geq 0$[/tex][/tex]
C. [tex]$x \leq -4$[/tex]
D. [tex]$x \geq -4$[/tex]



Answer :

To determine the values of [tex]\( x \)[/tex] for which the product [tex]\( \sqrt{5x} \cdot \sqrt{x+4} \)[/tex] is defined, we need to ensure that both square roots are defined. This means both expressions under the square roots must be non-negative.

### Step 1: Determine the condition for [tex]\( \sqrt{5x} \)[/tex] to be defined.
The expression [tex]\( \sqrt{5x} \)[/tex] is defined if and only if:
[tex]\[ 5x \geq 0 \][/tex]

Solving this inequality:
[tex]\[ x \geq 0 \][/tex]

### Step 2: Determine the condition for [tex]\( \sqrt{x+4} \)[/tex] to be defined.
The expression [tex]\( \sqrt{x+4} \)[/tex] is defined if and only if:
[tex]\[ x + 4 \geq 0 \][/tex]

Solving this inequality:
[tex]\[ x \geq -4 \][/tex]

### Step 3: Combine both conditions.
For the product [tex]\( \sqrt{5x} \cdot \sqrt{x+4} \)[/tex] to be defined, both inequalities must be satisfied simultaneously:
[tex]\[ x \geq 0 \quad \text{and} \quad x \geq -4 \][/tex]

The more restrictive condition here is [tex]\( x \geq 0 \)[/tex], because it encompasses the requirement [tex]\( x \geq -4 \)[/tex] (i.e., if [tex]\( x \geq 0 \)[/tex], it is naturally also [tex]\( \geq -4 \)[/tex]).

### Conclusion:
Combining these results, the inequality that represents all values of [tex]\( x \)[/tex] for which the product [tex]\( \sqrt{5x} \cdot \sqrt{x+4} \)[/tex] is defined is:
[tex]\[ x \geq 0 \][/tex]

The correct answer is:
[tex]\[ \boxed{x \geq 0} \][/tex]