If [tex]5 \cos A + 3 = 0[/tex] and [tex]180^{\circ} \ \textless \ A \ \textless \ 360^{\circ}[/tex], without using a calculator and with the aid of a diagram, determine the value of [tex]\sin A + \cos A[/tex].

A. [tex]\frac{5}{7}[/tex]
B. [tex]-\frac{5}{7}[/tex]
C. [tex]-\frac{7}{5}[/tex]
D. [tex]\frac{7}{5}[/tex]



Answer :

Of course, let's solve this step-by-step.

Given the equation:

[tex]\[ 5 \cos A + 3 = 0 \][/tex]

We can solve for [tex]\(\cos A\)[/tex]:

[tex]\[ 5 \cos A = -3 \][/tex]
[tex]\[ \cos A = -\frac{3}{5} \][/tex]

Since [tex]\(180^{\circ}
To find [tex]\(\sin A\)[/tex], we use the Pythagorean identity:

[tex]\[ \sin^2 A + \cos^2 A = 1 \][/tex]

Substitute the value of [tex]\(\cos A\)[/tex]:

[tex]\[ \sin^2 A + \left( -\frac{3}{5} \right)^2 = 1 \][/tex]
[tex]\[ \sin^2 A + \frac{9}{25} = 1 \][/tex]
[tex]\[ \sin^2 A = 1 - \frac{9}{25} \][/tex]
[tex]\[ \sin^2 A = \frac{25}{25} - \frac{9}{25} \][/tex]
[tex]\[ \sin^2 A = \frac{16}{25} \][/tex]

Taking the square root, we have:

[tex]\[ \sin A = \pm \frac{4}{5} \][/tex]

Since [tex]\(A\)[/tex] is between [tex]\(180^{\circ}\)[/tex] and [tex]\(360^{\circ}\)[/tex], which means it's either in the third quadrant or the fourth quadrant. In these quadrants, cosine is negative and sine is negative. Thus:

[tex]\[ \sin A = - \frac{4}{5} \][/tex]

Now, we find [tex]\(\sin A + \cos A\)[/tex]:

[tex]\[ \sin A + \cos A = -\frac{4}{5} + \left( -\frac{3}{5} \right) \][/tex]
[tex]\[ \sin A + \cos A = -\frac{4}{5} - \frac{3}{5} \][/tex]
[tex]\[ \sin A + \cos A = -\frac{7}{5} \][/tex]

So the correct value of [tex]\(\sin A + \cos A\)[/tex] is [tex]\(-\frac{7}{5}\)[/tex].

Thus, the answer is:

c. [tex]\(\boxed{-\frac{7}{5}}\)[/tex]