Which choice is equivalent to the product below for acceptable values of [tex]x[/tex]?

[tex]\sqrt{6x} \cdot \sqrt{x+3}[/tex]

A. [tex]\sqrt{6x^2 + 18x}[/tex]

B. [tex]6x \sqrt{x+3}[/tex]

C. [tex]\sqrt{6x^2 + 18}[/tex]

D. [tex]\sqrt{6x^2 + 3}[/tex]



Answer :

To determine which of the given choices is equivalent to the product [tex]\(\sqrt{6x} \cdot \sqrt{x+3}\)[/tex], consider the simplification process.

Firstly, recognize that the product of square roots can be simplified using the property [tex]\(\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}\)[/tex]. In this case:
[tex]\[ \sqrt{6x} \cdot \sqrt{x+3} = \sqrt{(6x) \cdot (x+3)} \][/tex]

Next, distribute the [tex]\(6x\)[/tex] inside the square root:
[tex]\[ (6x) \cdot (x+3) = 6x \cdot x + 6x \cdot 3 \][/tex]

Simplify the expression within the square root:
[tex]\[ 6x \cdot x + 6x \cdot 3 = 6x^2 + 18x \][/tex]

Now we have:
[tex]\[ \sqrt{6x} \cdot \sqrt{x+3} = \sqrt{6x^2 + 18x} \][/tex]

Thus, the expression [tex]\(\sqrt{6x} \cdot \sqrt{x+3}\)[/tex] simplifies to [tex]\(\sqrt{6x^2 + 18x}\)[/tex]. Therefore, the choice equivalent to this expression is:

A. [tex]\(\sqrt{6x^2 + 18x}\)[/tex]