Which choice is equivalent to the product below when [tex]$x \geq 0$[/tex]?

[tex]\sqrt{4 x^2} \cdot \sqrt{20 x^2}[/tex]

A. [tex]5 \sqrt{4 x}[/tex]

B. [tex]\sqrt{20 x^2}[/tex]

C. [tex]\sqrt{80 x^2}[/tex]

D. [tex]4 x^2 \sqrt{5}[/tex]



Answer :

Let's solve the problem step-by-step.

We are given the expression:

[tex]\[ \sqrt{4 x^2} \cdot \sqrt{20 x^2} \][/tex]

First, we need to use the property of square roots that states:

[tex]\[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \][/tex]

Applying this property to our expression:

[tex]\[ \sqrt{4 x^2} \cdot \sqrt{20 x^2} = \sqrt{(4 x^2) \cdot (20 x^2)} \][/tex]

Next, we multiply the terms inside the square root:

[tex]\[ (4 x^2) \cdot (20 x^2) = 4 \cdot 20 \cdot x^2 \cdot x^2 = 80 x^4 \][/tex]

Hence, the expression now becomes:

[tex]\[ \sqrt{80 x^4} \][/tex]

Now, we simplify the square root. Recall that:

[tex]\[ \sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b} \][/tex]

In our case:

[tex]\[ \sqrt{80 x^4} = \sqrt{80} \cdot \sqrt{x^4} \][/tex]

We know that:

[tex]\[ \sqrt{x^4} = (x^4)^{1/2} = x^2 \][/tex]

Thus, the expression simplifies to:

[tex]\[ \sqrt{80} \cdot x^2 \][/tex]

Consequently:

[tex]\[ \sqrt{80 x^4} = \sqrt{80} \cdot x^2 \][/tex]

We are left with:

[tex]\[ \sqrt{80 x^2} \][/tex]

Among the given choices, the equivalent expression is:

C. [tex]\(\sqrt{80 x^2}\)[/tex]

Therefore, the correct choice is [tex]\( \boxed{\text{C}} \)[/tex].