If [tex]\sin 61^{\circ}=\sqrt{p}[/tex], determine the following in terms of [tex]p[/tex]:

[tex]\sin 241^{\circ}[/tex]

A. [tex]-\sqrt{p}[/tex]
B. [tex]-\sqrt{-p}[/tex]
C. [tex]\sqrt{p}[/tex]
D. [tex]\sqrt{-p}[/tex]


Determine the following:

[tex]\sin 29^{\circ}[/tex]

A. [tex]\sqrt{1+p}[/tex]
B. [tex]-\sqrt{1+p}[/tex]
C. [tex]\sqrt{1-p}[/tex]
D. [tex]-\sqrt{1-p}[/tex]



Answer :

Given that [tex]\(\sin 61^\circ = \sqrt{p}\)[/tex], we want to determine:

1. [tex]\(\sin 241^\circ\)[/tex]
2. [tex]\(\sin 29^\circ\)[/tex]

### Step-by-Step Solution:

#### Finding [tex]\(\sin 241^\circ\)[/tex]:

To find [tex]\(\sin 241^\circ\)[/tex], we use the fact that 241° can be expressed as [tex]\(180^\circ + 61^\circ\)[/tex]:
[tex]\[ 241^\circ = 180^\circ + 61^\circ \][/tex]

Using the sine addition formula, we know that:
[tex]\[ \sin(180^\circ + x) = -\sin(x) \][/tex]

Therefore,
[tex]\[ \sin(241^\circ) = \sin(180^\circ + 61^\circ) = -\sin(61^\circ) \][/tex]

Given that [tex]\(\sin 61^\circ = \sqrt{p}\)[/tex], we substitute:
[tex]\[ \sin(241^\circ) = -\sqrt{p} \][/tex]

So, the correct answer for [tex]\(\sin 241^\circ\)[/tex] is:
a. [tex]\(-\sqrt{p}\)[/tex]

#### Finding [tex]\(\sin 29^\circ\)[/tex]:

Next, we need to find [tex]\(\sin 29^\circ\)[/tex].

Using the complementary angle identity:
[tex]\[ 29^\circ = 90^\circ - 61^\circ \][/tex]

We know that:
[tex]\[ \sin(90^\circ - x) = \cos(x) \][/tex]

Thus,
[tex]\[ \sin(29^\circ) = \cos(61^\circ) \][/tex]

Now, we use the Pythagorean identity:
[tex]\[ \cos^2(x) + \sin^2(x) = 1 \][/tex]

Substituting [tex]\(\sin 61^\circ = \sqrt{p}\)[/tex], we get:
[tex]\[ \cos^2(61^\circ) + (\sqrt{p})^2 = 1 \][/tex]
[tex]\[ \cos^2(61^\circ) + p = 1 \][/tex]
[tex]\[ \cos^2(61^\circ) = 1 - p \][/tex]

Therefore,
[tex]\[ \cos(61^\circ) = \sqrt{1 - p} \text{ (since cosine is positive in the first quadrant)} \][/tex]

So,
[tex]\[ \sin(29^\circ) = \sqrt{1 - p} \][/tex]

The correct answer for [tex]\(\sin 29^\circ\)[/tex] is:
c. [tex]\(\sqrt{1 - p}\)[/tex]

### Final Answer:

1. [tex]\(\sin 241^\circ\)[/tex]:
a. [tex]\(-\sqrt{p}\)[/tex]

2. [tex]\(\sin 29^\circ\)[/tex]:
c. [tex]\(\sqrt{1 - p}\)[/tex]