Answer :

Certainly! Let's solve the problem step-by-step:

1. Given Function: The function provided is [tex]\( h(x) = 23x - 10 + 4 \)[/tex].

2. Simplify the Function: Simplify the expression inside the function to make it easier to work with.
[tex]\[ h(x) = 23x - 10 + 4 \][/tex]
Combine the constant terms:
[tex]\[ h(x) = 23x - 6 \][/tex]

3. Find the x-intercept: To find the x-intercept, we need to determine the value of [tex]\( x \)[/tex] where the function [tex]\( h(x) = 0 \)[/tex].

4. Set [tex]\( h(x) = 0 \)[/tex]:
[tex]\[ 0 = 23x - 6 \][/tex]

5. Solve for [tex]\( x \)[/tex]:
[tex]\[ 23x - 6 = 0 \][/tex]
Add 6 to both sides:
[tex]\[ 23x = 6 \][/tex]
Divide both sides by 23:
[tex]\[ x = \frac{6}{23} \][/tex]

6. x-intercept: The value of [tex]\( x \)[/tex] at which [tex]\( h(x) = 0 \)[/tex] is:
[tex]\[ x = \frac{6}{23} \][/tex]

Thus, the x-intercept of the function [tex]\( h(x) = 23x - 6 \)[/tex] is approximately [tex]\( 0.26087 \)[/tex].