A graphics designer has a star-shaped figure with vertices whose coordinates are represented by the matrix below. Her customer wants the figure increased in size by a factor of 1.5. Find the coordinates of the vertices of the enlargement.

[tex]\[ \begin{bmatrix}
0 & 5 & -5 & -3 & 3 \\
4 & 0 & 0 & -4 & -4
\end{bmatrix} \][/tex]

A. [tex]\[ \begin{bmatrix}
0 & 7.5 & -7.5 & -4.5 & 4.5 \\
6 & 0 & 0 & -6 & -6
\end{bmatrix} \][/tex]

B. [tex]\[ \begin{bmatrix}
0 & 7.5 & -7.5 & -4.5 & 4.5 \\
-6 & 0 & 0 & 6 & 6
\end{bmatrix} \][/tex]

C. [tex]\[ \begin{bmatrix}
0 & 7.5 & -7.5 & 4.5 & -4.5 \\
6 & 0 & 0 & -6 & -6
\end{bmatrix} \][/tex]

D. [tex]\[ \begin{bmatrix}
0 & 6.5 & -3.5 & 4.5 & -1.5 \\
5.5 & 0 & 0 & -2.5 & -2.5
\end{bmatrix} \][/tex]



Answer :

To find the coordinates of the vertices of the enlarged star-shaped figure, we will use the scaling factor provided and apply it to each coordinate in the original matrix.

The original coordinates of the vertices are given by the matrix:
[tex]\[ \begin{pmatrix} 0 & 5 & -5 & -3 & 3 \\ 4 & 0 & 0 & -4 & -4 \end{pmatrix} \][/tex]

The scaling factor is [tex]\(1.5\)[/tex].

To enlarge the figure by the given factor, we multiply each coordinate by the scaling factor. Let's calculate it step by step:

### Step 1: Multiply each element of the first row by the scaling factor
- [tex]\(0 \times 1.5 = 0\)[/tex]
- [tex]\(5 \times 1.5 = 7.5\)[/tex]
- [tex]\(-5 \times 1.5 = -7.5\)[/tex]
- [tex]\(-3 \times 1.5 = -4.5\)[/tex]
- [tex]\(3 \times 1.5 = 4.5\)[/tex]

This gives us the first row of the enlarged matrix:
[tex]\[ \begin{pmatrix} 0 & 7.5 & -7.5 & -4.5 & 4.5 \end{pmatrix} \][/tex]

### Step 2: Multiply each element of the second row by the scaling factor
- [tex]\(4 \times 1.5 = 6\)[/tex]
- [tex]\(0 \times 1.5 = 0\)[/tex]
- [tex]\(0 \times 1.5 = 0\)[/tex]
- [tex]\(-4 \times 1.5 = -6\)[/tex]
- [tex]\(-4 \times 1.5 = -6\)[/tex]

This gives us the second row of the enlarged matrix:
[tex]\[ \begin{pmatrix} 6 & 0 & 0 & -6 & -6 \end{pmatrix} \][/tex]

### Step 3: Compile the enlarged coordinates matrix
Combining both rows, we get the enlarged coordinates matrix:
[tex]\[ \begin{pmatrix} 0 & 7.5 & -7.5 & -4.5 & 4.5 \\ 6 & 0 & 0 & -6 & -6 \end{pmatrix} \][/tex]

### Step 4: Match our result with the given options
The result we obtained matches option a:
[tex]\[ \begin{pmatrix} 0 & 7.5 & -7.5 & -4.5 & 4.5 \\ 6 & 0 & 0 & -6 & -6 \end{pmatrix} \][/tex]

Hence, the coordinates of the vertices of the enlargement are:
[tex]\[ \begin{pmatrix} 0 & 7.5 & -7.5 & -4.5 & 4.5 \\ 6 & 0 & 0 & -6 & -6 \end{pmatrix} \][/tex]
and this corresponds to option a.