All of the [tex]$100 \, \text{cm}^3$[/tex] hydrochloric acid solution is allowed to react with [tex]$3.5 \, \text{g}$[/tex] of an unknown metal carbonate [tex]\left( \text{MCO}_3 \right)[/tex] according to the balanced equation:

[tex]\[ \text{MCO}_3(s) + 2 \, \text{HCl} (aq) \rightarrow \text{MCl}_2 (aq) + 2 \, \text{H}_2 \text{O} (\ell) + \text{CO}_2(g) \][/tex]

The hydrochloric acid solution is found to be in excess. The excess hydrochloric acid (HCl) is neutralized by [tex]$25 \, \text{cm}^3$[/tex] of a sodium hydroxide (NaOH) solution with a concentration of [tex]$0.8 \, \text{mol} \cdot \text{dm}^{-3}$[/tex].

The neutralization reaction of the excess HCl solution is shown below:

[tex]\[ \text{NaOH} (aq) + \text{HCl} (aq) \rightarrow \text{NaCl} (aq) + \text{H}_2 \text{O} (\ell) \][/tex]

Determine by calculation the symbol of the unknown metal, [tex]$M$[/tex].



Answer :

Certainly! Let's determine the symbol of the unknown metal [tex]\( M \)[/tex] through a step-by-step calculation:

### Step-by-Step Calculation:

1. Volume and Concentration of Sodium Hydroxide Solution:
- Volume of NaOH solution: [tex]\( 25 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 25 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.025 \, \text{dm}^3 \)[/tex]

- Concentration of NaOH solution: [tex]\( 0.8 \, \text{mol} \cdot \text{dm}^{-3} \)[/tex]

2. Calculate the Moles of NaOH:
- Using the formula [tex]\( \text{moles} = \text{volume} \times \text{concentration} \)[/tex]:
[tex]\[ \text{moles of NaOH} = 0.025 \, \text{dm}^3 \times 0.8 \, \text{mol} \cdot \text{dm}^{-3} = 0.020 \, \text{mol} \][/tex]

3. Determining the Moles of Excess HCl:
- Since NaOH reacts with HCl in a 1:1 molar ratio:
[tex]\[ \text{moles of excess HCl} = \text{moles of NaOH} = 0.020 \, \text{mol} \][/tex]

4. Initial Moles of HCl:
- Volume of HCl solution: [tex]\( 100 \, \text{cm}^3 \)[/tex]
- Convert volume from [tex]\( \text{cm}^3 \)[/tex] to [tex]\( \text{dm}^3 \)[/tex]: [tex]\( 100 \, \text{cm}^3 \times \frac{1 \, \text{dm}^3}{1000 \, \text{cm}^3} = 0.1 \, \text{dm}^3 \)[/tex]

- The solution is in excess, and the neutralized amount is the excess moles:
[tex]\[ \text{initial moles of HCl} = \text{moles of excess HCl} + \text{moles of NaOH} \][/tex]
[tex]\[ \text{initial moles of HCl} = 0.020 \, \text{mol} + 0.020 \, \text{mol} = 0.040 \, \text{mol} \][/tex]

5. HCl That Reacted with [tex]\( MCO_3 \)[/tex]:
- Moles of HCl that reacted with [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of HCl reacted} = \text{initial moles of HCl} - \text{moles of excess HCl} = 0.040 \, \text{mol} - 0.020 \, \text{mol} = 0.020 \, \text{mol} \][/tex]

6. Moles of [tex]\( MCO_3 \)[/tex]:
- Based on the balanced chemical equation:
[tex]\[ MCO_3 + 2HCl \rightarrow \text{products} \][/tex]
- It takes 2 moles of HCl to react with 1 mole of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{moles of } MCO_3 = \frac{\text{moles of HCl reacted}}{2} = \frac{0.020 \, \text{mol}}{2} = 0.010 \, \text{mol} \][/tex]

7. Finding the Molar Mass of [tex]\( MCO_3 \)[/tex]:
- Given mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 3.5 \, \text{g} \)[/tex]
- Using the formula [tex]\( \text{molar mass} = \frac{\text{mass}}{\text{moles}} \)[/tex]:
[tex]\[ \text{molar mass of } MCO_3 = \frac{3.5 \, \text{g}}{0.010 \, \text{mol}} = 350 \, \text{g} \cdot \text{mol}^{-1} \][/tex]

8. Finding the Molar Mass of the Metal [tex]\( M \)[/tex]:
- Molar mass of [tex]\( CO_3 \)[/tex]: [tex]\( 12 \, (\text{C}) + 16 \times 3 \, (\text{O}) = 60 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of [tex]\( MCO_3 \)[/tex]: [tex]\( 350 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]
- Molar mass of metal [tex]\( M \)[/tex] is found by subtracting molar mass of [tex]\( CO_3 \)[/tex] from molar mass of [tex]\( MCO_3 \)[/tex]:
[tex]\[ \text{Molar mass of } M = 350 \, \text{g} \cdot \text{mol}^{-1} - 60 \, \text{g} \cdot \text{mol}^{-1} = 290 \, \text{g} \cdot \text{mol}^{-1} \][/tex]

### Conclusion:
The molar mass of the unknown metal [tex]\( M \)[/tex] is [tex]\( 290 \, \text{g} \cdot \text{mol}^{-1} \)[/tex]. Given this specific molar mass, the metal is likely to be Rhenium ([tex]\( \text{Re} \)[/tex]), which has a molar mass close to 290 g/mol.

Therefore, the symbol of the unknown metal [tex]\( M \)[/tex] is [tex]\( \text{Re} \)[/tex].