The vertices of [tex] \Delta GHI [/tex] are [tex] G(-4,0), H(5,2), [/tex] and [tex] I(-2,-3) [/tex]. [tex] \Delta GHI [/tex] is rotated [tex] 270^{\circ} [/tex] counterclockwise about the origin to form [tex] \Delta G^{\prime}H^{\prime}I^{\prime} [/tex].

What are the coordinates of the vertices of [tex] \Delta G^{\prime}H^{\prime}I^{\prime} [/tex]?



Answer :

Let's determine the coordinates of the vertices of [tex]\( \Delta G'H'I' \)[/tex] after a [tex]\( 270^\circ \)[/tex] counterclockwise rotation about the origin.

1. Understand the effect of a [tex]\( 270^\circ \)[/tex] counterclockwise rotation:

When a point [tex]\((x, y)\)[/tex] is rotated [tex]\( 270^\circ \)[/tex] counterclockwise around the origin, the new coordinates [tex]\((x', y')\)[/tex] can be determined by:
[tex]\[ (x', y') = (y, -x) \][/tex]

2. Apply the rotation to each vertex of [tex]\( \Delta GHI \)[/tex]:

- For [tex]\( G(-4, 0) \)[/tex]:
[tex]\[ (x', y') = (0, -(-4)) = (0, 4) \][/tex]
So, [tex]\( G' = (0, 4) \)[/tex].

- For [tex]\( H(5, 2) \)[/tex]:
[tex]\[ (x', y') = (2, -5) = (2, -5) \][/tex]
So, [tex]\( H' = (2, -5) \)[/tex].

- For [tex]\( I(-2, -3) \)[/tex]:
[tex]\[ (x', y') = (-3, -(-2)) = (-3, 2) \][/tex]
So, [tex]\( I' = (-3, 2) \)[/tex].

3. Summary of the coordinates after rotation:

The coordinates of the vertices of [tex]\( \Delta G'H'I' \)[/tex] after a [tex]\( 270^\circ \)[/tex] counterclockwise rotation about the origin are:
[tex]\[ G' = (0, 4),\ H' = (2, -5),\ I' = (-3, 2) \][/tex]

So, the vertices of [tex]\( \Delta G'H'I' \)[/tex] are [tex]\( (0, 4), (2, -5), \)[/tex] and [tex]\( (-3, 2) \)[/tex].