Enter the correct answer in the box.

Use long division to rewrite the following expression:
[tex]\[ \frac{18z^2 + 5z + 5}{6z^2 - 4z + 1} \][/tex]

Write your answer in the format of [tex]\[ q(x) + \frac{r(x)}{b(x)} \][/tex].

[tex]\[\boxed{}\][/tex]



Answer :

To solve the given expression using long division, we need to divide the polynomial [tex]\(18z^2 + 5z + 5\)[/tex] by the polynomial [tex]\(6z^2 - 4z + 1\)[/tex].

### Step-by-Step Long Division:

1. Divide the leading terms:
[tex]\[ \frac{18z^2}{6z^2} = 3 \][/tex]
So, the first term of the quotient is [tex]\(3\)[/tex].

2. Multiply the entire divisor by this term (3):
[tex]\[ 3 \times (6z^2 - 4z + 1) = 18z^2 - 12z + 3 \][/tex]

3. Subtract this from the original polynomial:
[tex]\[ (18z^2 + 5z + 5) - (18z^2 - 12z + 3) = 17z + 2 \][/tex]

So, the quotient so far is [tex]\(3\)[/tex] and the remainder is [tex]\(17z + 2\)[/tex].

4. Express the remainder over the original divisor:
[tex]\[ \frac{17z + 2}{6z^2 - 4z + 1} \][/tex]

### Final Answer:

Combining the quotient and the remainder, we get:
[tex]\[ \frac{18z^2 + 5z + 5}{6z^2 - 4z + 1} = 3 + \frac{17z + 2}{6z^2 - 4z + 1} \][/tex]

So, the expression can be rewritten in the format [tex]\(q(x) + \frac{r(x)}{b(x)}\)[/tex] as follows:

[tex]\[ 3 + \frac{17z + 2}{6z^2 - 4z + 1} \][/tex]

This is the correct answer.