Select the correct answer.

Use the algebra tiles to determine the polynomial equivalent to this expression.

[tex]\[
\frac{x^2 + 6x + 9}{x + 3}
\][/tex]

A. [tex]\( x^2 + 3x \)[/tex]
B. [tex]\( x - 3 \)[/tex]
C. [tex]\( x + 3 \)[/tex]
D. [tex]\( x^2 - 3x \)[/tex]



Answer :

To solve the problem of finding the polynomial equivalent to the expression [tex]\(\frac{x^2 + 6x + 9}{x + 3}\)[/tex], we can use polynomial long division.

### Step-by-Step Solution:

1. Set Up the Division:
- Dividend: [tex]\(x^2 + 6x + 9\)[/tex]
- Divisor: [tex]\(x + 3\)[/tex]

2. Divide the First Term:
- Divide the leading term of the dividend ([tex]\(x^2\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]):
[tex]\[ \frac{x^2}{x} = x \][/tex]
- Place [tex]\(x\)[/tex] above the division line.

3. Multiply and Subtract:
- Multiply [tex]\(x\)[/tex] by the divisor ([tex]\(x + 3\)[/tex]):
[tex]\[ x \cdot (x + 3) = x^2 + 3x \][/tex]
- Subtract this result from the original dividend:
[tex]\[ (x^2 + 6x + 9) - (x^2 + 3x) = 3x + 9 \][/tex]

4. Divide the Next Term:
- Divide the leading term of the new dividend ([tex]\(3x\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]):
[tex]\[ \frac{3x}{x} = 3 \][/tex]
- Place [tex]\(3\)[/tex] above the division line next to [tex]\(x\)[/tex].

5. Multiply and Subtract:
- Multiply [tex]\(3\)[/tex] by the divisor ([tex]\(x + 3\)[/tex]):
[tex]\[ 3 \cdot (x + 3) = 3x + 9 \][/tex]
- Subtract this result from the current dividend:
[tex]\[ (3x + 9) - (3x + 9) = 0 \][/tex]

6. Conclusion:
- Since there is no remainder, the quotient of the division is [tex]\(x + 3\)[/tex].

Thus, the polynomial equivalent to the expression [tex]\(\frac{x^2 + 6x + 9}{x + 3}\)[/tex] is [tex]\(x + 3\)[/tex].

### Answer:
The correct answer is:
C. [tex]\(x + 3\)[/tex]