Select the correct answer.

What is the simplest form of this expression?

[tex]\[ 3x(-x^2 + 2x + 12) \][/tex]

A. [tex]\(-3x^3 + 5x^2 + 36x\)[/tex]

B. [tex]\(-3x^3 + 20x\)[/tex]

C. [tex]\(-3x^3 + 6x^2 + 36x\)[/tex]

D. [tex]\(-3x^3 + 5x^2 + 15x\)[/tex]



Answer :

To find the simplest form of the expression:

[tex]\[ 3x \left(-x^2 + 2x + 12\right) \][/tex]

we need to distribute [tex]\(3x\)[/tex] across the terms inside the parentheses.

First, multiply [tex]\(3x\)[/tex] by [tex]\(-x^2\)[/tex]:

[tex]\[ 3x \cdot (-x^2) = -3x^3 \][/tex]

Next, multiply [tex]\(3x\)[/tex] by [tex]\(2x\)[/tex]:

[tex]\[ 3x \cdot 2x = 6x^2 \][/tex]

Lastly, multiply [tex]\(3x\)[/tex] by [tex]\(12\)[/tex]:

[tex]\[ 3x \cdot 12 = 36x \][/tex]

Now, combine all these terms together:

[tex]\[ -3x^3 + 6x^2 + 36x \][/tex]

Therefore, the simplest form of the given expression is:

[tex]\[ -3x^3 + 6x^2 + 36x \][/tex]

So, the correct answer is:

[tex]\[ -3x^3 + 6x^2 + 36x \][/tex]