Half 2-digit numbers by decomposing them into multiples of tens and units.

Example:
Halve 24
[tex]\[ 24 = 20 + 4 \][/tex]
[tex]\[ \frac{20}{2} + \frac{4}{2} = 10 + 2 = 12 \][/tex]

Now, solve the following:

1. Half 22

2. Halve 46
[tex]\[ 46 = \][/tex]

3. Halve 28
[tex]\[ 28 = \][/tex]



Answer :

Sure, let's break down each step:

### Halve 22
1. Decompose 22 into tens and units:
- Tens: [tex]\( 20 \)[/tex]
- Units: [tex]\( 2 \)[/tex]

2. Halve the tens and units:
- Half of 20 is [tex]\( 10 \)[/tex]
- Half of 2 is [tex]\( 1.0 \)[/tex]

3. Add the two halves:
- [tex]\( 10 + 1.0 = 11.0 \)[/tex]

So, halving 22 gives us:
[tex]\[ 22 \rightarrow 20 + 2 \rightarrow 10 + 1.0 = 11.0 \][/tex]

### Halve 46
1. Decompose 46 into tens and units:
- Tens: [tex]\( 40 \)[/tex]
- Units: [tex]\( 6 \)[/tex]

2. Halve the tens and units:
- Half of 40 is [tex]\( 20 \)[/tex]
- Half of 6 is [tex]\( 3.0 \)[/tex]

3. Add the two halves:
- [tex]\( 20 + 3.0 = 23.0 \)[/tex]

So, halving 46 gives us:
[tex]\[ 46 \rightarrow 40 + 6 \rightarrow 20 + 3.0 = 23.0 \][/tex]

### Halve 28
1. Decompose 28 into tens and units:
- Tens: [tex]\( 20 \)[/tex]
- Units: [tex]\( 8 \)[/tex]

2. Halve the tens and units:
- Half of 20 is [tex]\( 10 \)[/tex]
- Half of 8 is [tex]\( 4.0 \)[/tex]

3. Add the two halves:
- [tex]\( 10 + 4.0 = 14.0 \)[/tex]

So, halving 28 gives us:
[tex]\[ 28 \rightarrow 20 + 8 \rightarrow 10 + 4.0 = 14.0 \][/tex]

Putting it all together:

1. Halve 22:
[tex]\[ 22 \rightarrow 20 + 2 \rightarrow 10 + 1.0 = 11.0 \][/tex]

2. Halve 46:
[tex]\[ 46 \rightarrow 40 + 6 \rightarrow 20 + 3.0 = 23.0 \][/tex]

3. Halve 28:
[tex]\[ 28 \rightarrow 20 + 8 \rightarrow 10 + 4.0 = 14.0 \][/tex]

Therefore, the results are:
- Half of 22 is [tex]\( 11.0 \)[/tex]
- Half of 46 is [tex]\( 23.0 \)[/tex]
- Half of 28 is [tex]\( 14.0 \)[/tex]