Answer :
Let's simplify each polynomial step-by-step and then classify them by degree and number of terms.
### Polynomial 1: [tex]\(\left(3x - \frac{1}{4}\right)(4x + 8)\)[/tex]
To simplify this, use the distributive property (also known as the FOIL method for binomials):
[tex]\[ (3x - \frac{1}{4})(4x + 8) = 3x \cdot 4x + 3x \cdot 8 - \frac{1}{4} \cdot 4x - \frac{1}{4} \cdot 8 \][/tex]
[tex]\[ = 12x^2 + 24x - x - 2 \][/tex]
Combine like terms:
[tex]\[ = 12x^2 + 23x - 2 \][/tex]
This polynomial is a quadratic trinomial because its highest degree is 2 (quadratic) and it has three terms (trinomial).
### Polynomial 2: [tex]\(\left(5x^2 + 7x\right) - \frac{1}{2}\left(10x^2 - 4\right)\)[/tex]
Simplify the expression inside the parentheses and distribute the [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ 5x^2 + 7x - \frac{1}{2}(10x^2 - 4) = 5x^2 + 7x - 5x^2 + 2 \][/tex]
Combine like terms:
[tex]\[ = 7x + 2 \][/tex]
This polynomial is a linear binomial because its highest degree is 1 (linear) and it has two terms (binomial).
### Polynomial 3: [tex]\(3\left(8x^2 + 4x - 2\right) + 6\left(-4x^2 - 2x + 3\right)\)[/tex]
Distribute the constants inside the parentheses:
[tex]\[ 3(8x^2 + 4x - 2) + 6(-4x^2 - 2x + 3) = 24x^2 + 12x - 6 - 24x^2 - 12x + 18 \][/tex]
Combine like terms:
[tex]\[ = (24x^2 - 24x^2) + (12x - 12x) + (-6 + 18) = 0x^2 + 0x + 12 = 12 \][/tex]
This polynomial is a constant monomial because it has no variable terms (constant) and it has one term (monomial).
Now we place the simplified forms and classifications in the table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Polynomial} & \text{Simplified Form} & \text{Name by Degree} & \text{Name by Number of Terms} \\ \hline \text{Polynomial 1} & 12x^2 + 23x - 2 & \text{quadratic} & \text{trinomial} \\ \hline \text{Polynomial 2} & 7x + 2 & \text{linear} & \text{binomial} \\ \hline \text{Polynomial 3} & 12 & \text{constant} & \text{monomial} \\ \hline \end{array} \][/tex]
This is the completed table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Polynomial} & \text{Simplified Form} & \text{Name by Degree} & \text{Name by Number of Terms} \\ \hline \text{Polynomial 1} & 12x^2 + 23x - 2 & \text{quadratic} & \text{trinomial} \\ \hline \text{Polynomial 2} & 7x + 2 & \text{linear} & \text{binomial} \\ \hline \text{Polynomial 3} & 12 & \text{constant} & \text{monomial} \\ \hline \end{array} \][/tex]
### Polynomial 1: [tex]\(\left(3x - \frac{1}{4}\right)(4x + 8)\)[/tex]
To simplify this, use the distributive property (also known as the FOIL method for binomials):
[tex]\[ (3x - \frac{1}{4})(4x + 8) = 3x \cdot 4x + 3x \cdot 8 - \frac{1}{4} \cdot 4x - \frac{1}{4} \cdot 8 \][/tex]
[tex]\[ = 12x^2 + 24x - x - 2 \][/tex]
Combine like terms:
[tex]\[ = 12x^2 + 23x - 2 \][/tex]
This polynomial is a quadratic trinomial because its highest degree is 2 (quadratic) and it has three terms (trinomial).
### Polynomial 2: [tex]\(\left(5x^2 + 7x\right) - \frac{1}{2}\left(10x^2 - 4\right)\)[/tex]
Simplify the expression inside the parentheses and distribute the [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ 5x^2 + 7x - \frac{1}{2}(10x^2 - 4) = 5x^2 + 7x - 5x^2 + 2 \][/tex]
Combine like terms:
[tex]\[ = 7x + 2 \][/tex]
This polynomial is a linear binomial because its highest degree is 1 (linear) and it has two terms (binomial).
### Polynomial 3: [tex]\(3\left(8x^2 + 4x - 2\right) + 6\left(-4x^2 - 2x + 3\right)\)[/tex]
Distribute the constants inside the parentheses:
[tex]\[ 3(8x^2 + 4x - 2) + 6(-4x^2 - 2x + 3) = 24x^2 + 12x - 6 - 24x^2 - 12x + 18 \][/tex]
Combine like terms:
[tex]\[ = (24x^2 - 24x^2) + (12x - 12x) + (-6 + 18) = 0x^2 + 0x + 12 = 12 \][/tex]
This polynomial is a constant monomial because it has no variable terms (constant) and it has one term (monomial).
Now we place the simplified forms and classifications in the table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Polynomial} & \text{Simplified Form} & \text{Name by Degree} & \text{Name by Number of Terms} \\ \hline \text{Polynomial 1} & 12x^2 + 23x - 2 & \text{quadratic} & \text{trinomial} \\ \hline \text{Polynomial 2} & 7x + 2 & \text{linear} & \text{binomial} \\ \hline \text{Polynomial 3} & 12 & \text{constant} & \text{monomial} \\ \hline \end{array} \][/tex]
This is the completed table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Polynomial} & \text{Simplified Form} & \text{Name by Degree} & \text{Name by Number of Terms} \\ \hline \text{Polynomial 1} & 12x^2 + 23x - 2 & \text{quadratic} & \text{trinomial} \\ \hline \text{Polynomial 2} & 7x + 2 & \text{linear} & \text{binomial} \\ \hline \text{Polynomial 3} & 12 & \text{constant} & \text{monomial} \\ \hline \end{array} \][/tex]