What is the simplest form of this expression?

[tex]\[ -x\left(4 x^2-6 x+1\right) \][/tex]

A. [tex]\(-4 x^3 - 6 x^2 - x\)[/tex]

B. [tex]\(-4 x^3 + 6 x^2 - x\)[/tex]

C. [tex]\(-4 x^3 - 6 x + 1\)[/tex]

D. [tex]\(-4 x^3 + 5 x\)[/tex]



Answer :

To simplify the expression [tex]\(-x\left(4 x^2-6 x+1\right)\)[/tex], follow these steps:

1. Distribute the [tex]\(-x\)[/tex] across each term inside the parentheses.

[tex]\[ -x \cdot 4x^2 = -4x^3 \][/tex]

[tex]\[ -x \cdot (-6x) = 6x^2 \][/tex]

[tex]\[ -x \cdot 1 = -x \][/tex]

2. Combine these results to form the simplified expression:

[tex]\[ -4x^3 + 6x^2 - x \][/tex]

So, the simplest form of the expression [tex]\(-x\left(4 x^2-6 x+1\right)\)[/tex] is:

[tex]\[ \boxed{-4 x^3 + 6 x^2 - x} \][/tex]

Therefore, the correct answer is:

B. [tex]\(-4 x^3 + 6 x^2 - x\)[/tex]