Drag each label to the correct location on the table. Each label can be used more than once, but not all labels will be used.

Simplify the given polynomials. Then, classify each polynomial by its degree and number of terms.

Polynomial 1: [tex]\(\left(x-\frac{1}{2}\right)(6x+2)\)[/tex]

Polynomial 2: [tex]\(\left(7x^2+3x\right) - \frac{1}{3}\left(21x^2-12\right)\)[/tex]

Polynomial 3: [tex]\(4\left(5x^2-9x+7\right) + 2\left(-10x^2+18x-13\right)\)[/tex]

Labels:
- linear
- quadratic
- binomial
- constant
- trinomial
- [tex]\(6x^2+2x-\frac{1}{2}\)[/tex]
- [tex]\(2\)[/tex]
- [tex]\(6\)[/tex]
- [tex]\(6x^2-x-1\)[/tex]

[tex]\[
\begin{tabular}{|c|c|c|c|}
\hline
\text{Polynomial} & \text{Simplified Form} & \text{Name by Degree} & \text{Name by Number of Terms} \\
\hline
1 & & quadratic & \\
\hline
2 & \(3x+4\) & & \\
\hline
3 & & & monomial \\
\hline
\end{tabular}
\][/tex]



Answer :

Let's simplify each polynomial and classify them by their degree and number of terms.

### Polynomial 1: [tex]\(\left(x-\frac{1}{2}\right)(6x+2)\)[/tex]

#### Simplification:
[tex]\[ \left(x - \frac{1}{2}\right)(6x + 2) = x(6x + 2) - \frac{1}{2}(6x + 2) \][/tex]
[tex]\[ = 6x^2 + 2x - 3x - 1 \][/tex]
[tex]\[ = 6x^2 - x - 1 \][/tex]

So, the simplified form is [tex]\(6x^2 - x - 1\)[/tex].

#### Classification:
- Degree: quadratic (since the highest power of [tex]\(x\)[/tex] is 2)
- Number of terms: trinomial (since there are 3 terms)

### Polynomial 2: [tex]\(\left(7x^2 + 3x\right) - \frac{1}{3}\left(21x^2 - 12\right)\)[/tex]

#### Simplification:
[tex]\[ \left(7x^2 + 3x\right) - \frac{1}{3}\left(21x^2 - 12\right) = 7x^2 + 3x - \left(7x^2 - 4\right) \][/tex]
[tex]\[ = 7x^2 + 3x - 7x^2 + 4 \][/tex]
[tex]\[ = 3x + 4 \][/tex]

So, the simplified form is [tex]\(3x + 4\)[/tex].

#### Classification:
- Degree: linear (since the highest power of [tex]\(x\)[/tex] is 1)
- Number of terms: binomial (since there are 2 terms)

### Polynomial 3: [tex]\(4\left(5x^2 - 9x + 7\right) + 2\left(-10x^2 + 18x - 13\right)\)[/tex]

#### Simplification:
[tex]\[ 4\left(5x^2 - 9x + 7\right) + 2\left(-10x^2 + 18x - 13\right) = 20x^2 - 36x + 28 - 20x^2 + 36x - 26 \][/tex]
[tex]\[ = 20x^2 - 20x^2 - 36x + 36x + 28 - 26 \][/tex]
[tex]\[ = 28 - 26 \][/tex]
[tex]\[ = 2 \][/tex]

So, the simplified form is [tex]\(2\)[/tex].

#### Classification:
- Degree: constant (since there is no [tex]\(x\)[/tex] term)
- Number of terms: monomial (since there is only 1 term)

### Final Table:

\begin{tabular}{|c|c|c|c|}
\hline
Polynomial & Simplified Form & \begin{tabular}{c} Name by \\ Degree \end{tabular} & \begin{tabular}{c} Name by \\ Number of Terms \end{tabular} \\
\hline
1 & [tex]\(6x^2 - x - 1\)[/tex] & quadratic & trinomial \\
\hline
2 & [tex]\(3x + 4\)[/tex] & linear & binomial \\
\hline
3 & [tex]\(2\)[/tex] & constant & monomial \\
\hline
\end{tabular}