A circuit consisting of a resistor in series with a capacitor takes 100 watts at a power factor of 0.5 from a 100 V, 60 Hz supply.

Find:
(a) The current flowing
(b) The phase angle
(c) The resistance
(d) The impedance
(e) The capacitance

[5 marks]



Answer :

To solve this problem, we need to find several electrical parameters for a circuit that consists of a resistor in series with a capacitor. We are given the following information:

- Power [tex]\( P = 100 \)[/tex] watts
- Power factor [tex]\( \text{pf} = 0.5 \)[/tex]
- Voltage [tex]\( V = 100 \)[/tex] volts
- Frequency [tex]\( f = 60 \)[/tex] Hz

Let’s proceed step-by-step:

### (a) Current Flowing (I)

The power [tex]\( P \)[/tex] in an AC circuit is given by the formula:
[tex]\[ P = V \cdot I \cdot \text{pf} \][/tex]

Rearranging to solve for the current [tex]\( I \)[/tex]:
[tex]\[ I = \frac{P}{V \cdot \text{pf}} \][/tex]

Substituting the given values:
[tex]\[ I = \frac{100}{100 \cdot 0.5} = 2.0 \, \text{A} \][/tex]

So, the current flowing is [tex]\( 2.0 \)[/tex] amperes.

### (b) Phase Angle (θ)

The power factor [tex]\( \text{pf} \)[/tex] is related to the phase angle [tex]\( \theta \)[/tex] by the cosine function:
[tex]\[ \text{pf} = \cos(\theta) \][/tex]

Therefore:
[tex]\[ \theta = \cos^{-1}(0.5) = \frac{\pi}{3} \approx 1.047 \, \text{radians} \][/tex]

So, the phase angle is approximately [tex]\( 1.047 \)[/tex] radians.

### (c) Resistance (R)

The power [tex]\( P \)[/tex] can also be expressed in terms of current and resistance:
[tex]\[ P = I^2 \cdot R \][/tex]

Rearranging to solve for the resistance [tex]\( R \)[/tex]:
[tex]\[ R = \frac{P}{I^2} \][/tex]

Substituting the given values:
[tex]\[ R = \frac{100}{2.0^2} = \frac{100}{4} = 25 \, \Omega \][/tex]

So, the resistance is [tex]\( 25 \)[/tex] ohms.

### (d) Impedance (Z)

The impedance [tex]\( Z \)[/tex] in an AC circuit can be calculated using Ohm's Law:
[tex]\[ Z = \frac{V}{I} \][/tex]

Substituting the given values:
[tex]\[ Z = \frac{100}{2.0} = 50 \, \Omega \][/tex]

So, the impedance is [tex]\( 50 \)[/tex] ohms.

### (e) Capacitance (C)

First, we need to find the reactance [tex]\( X \)[/tex] of the capacitor. The impedance [tex]\( Z \)[/tex] in a series RC circuit is related to resistance [tex]\( R \)[/tex] and reactance [tex]\( X \)[/tex] by:
[tex]\[ Z = \sqrt{R^2 + X^2} \][/tex]

Rearranging to solve for the reactance [tex]\( X \)[/tex]:
[tex]\[ X = \sqrt{Z^2 - R^2} \][/tex]

Substituting the values:
[tex]\[ X = \sqrt{50^2 - 25^2} = \sqrt{2500 - 625} = \sqrt{1875} \approx 43.30 \, \Omega \][/tex]

Now, the reactance [tex]\( X \)[/tex] of a capacitor is given by:
[tex]\[ X = \frac{1}{2\pi f C} \][/tex]

Rearranging to solve for the capacitance [tex]\( C \)[/tex]:
[tex]\[ C = \frac{1}{2\pi f X} \][/tex]

Substituting the values:
[tex]\[ C = \frac{1}{2 \pi \cdot 60 \cdot 43.30} \approx 6.13 \times 10^{-5} \, \text{F} \][/tex]

So, the capacitance is approximately [tex]\( 6.13 \times 10^{-5} \)[/tex] farads.

### Summary

1. Current flowing (I): [tex]\( 2.0 \)[/tex] amperes
2. Phase angle (θ): [tex]\( 1.047 \)[/tex] radians
3. Resistance (R): [tex]\( 25 \)[/tex] ohms
4. Impedance (Z): [tex]\( 50 \)[/tex] ohms
5. Capacitance (C): [tex]\( 6.13 \times 10^{-5} \)[/tex] farads