Solve for [tex]\(\Delta\)[/tex].

1. [tex]\(\Delta + \Delta + \dot{\Delta} = 22\)[/tex]
[tex]\[
\Delta = \, \text{[solve for \(\Delta\)]}
\][/tex]

2. [tex]\(\Delta \div 2 = 4\)[/tex]
[tex]\[
\Delta = \, \text{[solve for \(\Delta\)]}
\][/tex]

3.
[tex]\[
\begin{array}{cc}
\text{Condition} & \Delta - \Delta = \Delta \\
\Delta = \Delta & 2 + \Delta + \Delta = \Delta
\end{array}
\][/tex]

4. Clue:
[tex]\[
2 + \Delta + \Delta = \Delta
\][/tex]

Solution and explanation:

[tex]\[ \text{[Provide detailed solution and explanation here]} \][/tex]



Answer :

Let's solve the given problem step-by-step:

We are given several equations and clues related to Δ:
1. [tex]\( \Delta + \Delta + \dot{\Delta} = 22 \)[/tex]
2. [tex]\( \Delta \div 2 = 4 \)[/tex]
3. [tex]\( 2 + \Delta + \Delta = \Delta \)[/tex]

First, let’s start with the second equation to find Δ:
[tex]\[ \Delta \div 2 = 4 \][/tex]

To solve for Δ, we multiply both sides of the equation by 2:
[tex]\[ \Delta = 4 \times 2 \][/tex]
[tex]\[ \Delta = 8 \][/tex]

Now that we know [tex]\( \Delta = 8 \)[/tex], let’s verify that it satisfies the given clues.

First clue: [tex]\( 2 + \Delta + \Delta = \Delta \)[/tex]
Let’s substitute [tex]\( \Delta = 8 \)[/tex] into this clue:
[tex]\[ 2 + 8 + 8 = \Delta \][/tex]
[tex]\[ 18 = 8 \][/tex]

This equation does not hold true, so the first clue is false.

Now let’s check the original equation:
[tex]\[ \Delta + \Delta + \dot{\Delta} = 22 \][/tex]
[tex]\[ 8 + 8 + \dot{\Delta} = 22 \][/tex]
[tex]\[ 16 + \dot{\Delta} = 22 \][/tex]

Solving for [tex]\( \dot{\Delta} \)[/tex]:
[tex]\[ \dot{\Delta} = 22 - 16 \][/tex]
[tex]\[ \dot{\Delta} = 6 \][/tex]

Finally, let's verify the second clue:
[tex]\[ \Delta \div 2 = 4 \][/tex]
[tex]\[ 8 \div 2 = 4 \][/tex]

This equation holds true, so the second clue is true.

To summarize:
- [tex]\( \Delta = 8 \)[/tex]
- [tex]\( \dot{\Delta} = 6 \)[/tex]
- First clue is false: [tex]\( 2 + \Delta + \Delta = \Delta \)[/tex] does not hold as [tex]\( 18 \neq 8 \)[/tex]
- Second clue is true: [tex]\( \Delta \div 2 = 4 \)[/tex] holds as [tex]\( 8 \div 2 = 4 \)[/tex]

Thus, the final solutions are:
- [tex]\( \Delta = 8 \)[/tex]
- [tex]\( \dot{\Delta} = 6 \)[/tex]