Given [tex]$\sin x = -\frac{12}{13}$[/tex] and [tex]$\cos x \ \textgreater \ 0$[/tex], what is the exact solution of [tex][tex]$\cos 2x$[/tex][/tex]?

A. [tex]-\frac{119}{169}[/tex]
B. [tex]-\frac{144}{169}[/tex]
C. [tex]\frac{119}{169}[/tex]
D. [tex]\frac{144}{169}[/tex]



Answer :

To find the exact value of [tex]\(\cos 2x\)[/tex] given that [tex]\(\sin x = -\frac{12}{13}\)[/tex] and [tex]\(\cos x > 0\)[/tex], follow these steps:

1. Understand the given information:
- [tex]\(\sin x = -\frac{12}{13}\)[/tex]
- [tex]\(\cos x > 0\)[/tex]

2. Use the Pythagorean identity to find [tex]\(\cos x\)[/tex]:
[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]
Substitute [tex]\(\sin x = -\frac{12}{13}\)[/tex]:
[tex]\[ \left(-\frac{12}{13}\right)^2 + \cos^2 x = 1 \][/tex]
[tex]\[ \frac{144}{169} + \cos^2 x = 1 \][/tex]
[tex]\[ \cos^2 x = 1 - \frac{144}{169} \][/tex]
[tex]\[ \cos^2 x = \frac{169}{169} - \frac{144}{169} \][/tex]
[tex]\[ \cos^2 x = \frac{25}{169} \][/tex]

3. Determine [tex]\(\cos x\)[/tex]:
Since [tex]\(\cos x > 0\)[/tex],
[tex]\[ \cos x = \sqrt{\frac{25}{169}} = \frac{5}{13} \][/tex]

4. Use the double-angle formula for cosine:
The double-angle formula for cosine is:
[tex]\[ \cos 2x = 2\cos^2 x - 1 \][/tex]
Substitute [tex]\(\cos x = \frac{5}{13}\)[/tex]:
[tex]\[ \cos^2 x = \left(\frac{5}{13}\right)^2 = \frac{25}{169} \][/tex]
[tex]\[ \cos 2x = 2 \cdot \frac{25}{169} - 1 \][/tex]
[tex]\[ \cos 2x = \frac{50}{169} - 1 \][/tex]
[tex]\[ \cos 2x = \frac{50}{169} - \frac{169}{169} \][/tex]
[tex]\[ \cos 2x = \frac{50 - 169}{169} \][/tex]
[tex]\[ \cos 2x = \frac{-119}{169} \][/tex]

5. Check the provided options for the answer:
The options were:
- [tex]\(-\frac{119}{169}\)[/tex]
- [tex]\(-\frac{144}{169}\)[/tex]
- [tex]\(\frac{119}{169}\)[/tex]
- [tex]\(\frac{144}{169}\)[/tex]

Given the calculation, the exact solution for [tex]\(\cos 2x\)[/tex] is:
[tex]\[ \cos 2x = -\frac{119}{169} \][/tex]

So, the correct answer is [tex]\(-\frac{119}{169}\)[/tex].