Of course! Let's simplify the expression step-by-step:
The given expression is:
[tex]\[ 6x - 8y - 5x + 3y \][/tex]
First, let's group the like terms together. In this case, we have terms involving [tex]\(x\)[/tex] and terms involving [tex]\( y\)[/tex]:
[tex]\[ (6x - 5x) + (-8y + 3y) \][/tex]
Next, let's simplify each group separately:
1. For the [tex]\(x\)[/tex]-terms:
[tex]\[ 6x - 5x \][/tex]
Combining these, we get:
[tex]\[ (6 - 5)x = 1x \][/tex]
2. For the [tex]\(y\)[/tex]-terms:
[tex]\[ -8y + 3y \][/tex]
Combining these, we get:
[tex]\[ (-8 + 3)y = -5y \][/tex]
Putting it all together, we obtain the simplified expression:
[tex]\[ 1x - 5y \][/tex]
So the simplified form of the given expression is:
[tex]\[ x - 5y \][/tex]
### Final answer:
[tex]\[ 6x - 8y - 5x + 3y = x - 5y \][/tex]