Answer :
To determine the number that completes the pattern in the given matrix, we need to identify a consistent algebraic relationship that holds for all the rows. We're aiming to find a consistent operation involving all elements in each row ([tex]\(a, b, c, d\)[/tex]) that leads us to a common value. Let's denote the rows as follows:
[tex]\[ \begin{array}{rrrr} -4 & -6 & -9 & -6 \\ ? & 7 & 4 & -4 \\ 9 & 3 & 2 & 6 \\ 3 & -4 & 8 & -6 \end{array} \][/tex]
We'll analyze the rows one-by-one to deduce the pattern.
### Step-by-step Analysis:
#### First Row:
[tex]\[ -4 \quad -6 \quad -9 \quad -6 \][/tex]
Let's denote the elements of this row as [tex]\(a = -4\)[/tex], [tex]\(b = -6\)[/tex], [tex]\(c = -9\)[/tex], and [tex]\(d = -6\)[/tex]. We hypothesize that the relation might be:
[tex]\[ b + c - d \][/tex]
For the first row:
[tex]\[ -6 + (-9) - (-6) \][/tex]
[tex]\[ = -6 - 9 + 6 \][/tex]
[tex]\[ = -9 \][/tex]
### Second Row:
[tex]\[ ? \quad 7 \quad 4 \quad -4 \][/tex]
Using the same relationship [tex]\(b + c - d\)[/tex], we try to find the missing value:
Let [tex]\(a = ?\)[/tex], [tex]\(b = 7\)[/tex], [tex]\(c = 4\)[/tex], and [tex]\(d = -4\)[/tex].
[tex]\[ 7 + 4 - (-4) \][/tex]
[tex]\[ = 7 + 4 + 4 \][/tex]
[tex]\[ = 15 \][/tex]
Thus, the missing value [tex]\(a\)[/tex] in the second row is [tex]\(15\)[/tex].
#### Third Row:
[tex]\[ 9 \quad 3 \quad 2 \quad 6 \][/tex]
Let's verify using the same relation [tex]\( b + c - d \)[/tex] to check consistency:
For the third row:
[tex]\[ 3 + 2 - 6 \][/tex]
[tex]\[ = 3 + 2 - 6 \][/tex]
[tex]\[ = -1 \][/tex]
#### Fourth Row:
[tex]\[ 3 \quad -4 \quad 8 \quad -6 \][/tex]
Finally, let's verify for the fourth row using the same pattern:
[tex]\[ -4 + 8 - (-6) \][/tex]
[tex]\[ = -4 + 8 + 6 \][/tex]
[tex]\[ = 10 \][/tex]
### Summary:
All rows follow the relationship [tex]\(b + c - d\)[/tex], and we have verified it through all known rows.
Therefore, the number that completes the pattern in the matrix for the second row is [tex]\( \boxed{15} \)[/tex].
[tex]\[ \begin{array}{rrrr} -4 & -6 & -9 & -6 \\ ? & 7 & 4 & -4 \\ 9 & 3 & 2 & 6 \\ 3 & -4 & 8 & -6 \end{array} \][/tex]
We'll analyze the rows one-by-one to deduce the pattern.
### Step-by-step Analysis:
#### First Row:
[tex]\[ -4 \quad -6 \quad -9 \quad -6 \][/tex]
Let's denote the elements of this row as [tex]\(a = -4\)[/tex], [tex]\(b = -6\)[/tex], [tex]\(c = -9\)[/tex], and [tex]\(d = -6\)[/tex]. We hypothesize that the relation might be:
[tex]\[ b + c - d \][/tex]
For the first row:
[tex]\[ -6 + (-9) - (-6) \][/tex]
[tex]\[ = -6 - 9 + 6 \][/tex]
[tex]\[ = -9 \][/tex]
### Second Row:
[tex]\[ ? \quad 7 \quad 4 \quad -4 \][/tex]
Using the same relationship [tex]\(b + c - d\)[/tex], we try to find the missing value:
Let [tex]\(a = ?\)[/tex], [tex]\(b = 7\)[/tex], [tex]\(c = 4\)[/tex], and [tex]\(d = -4\)[/tex].
[tex]\[ 7 + 4 - (-4) \][/tex]
[tex]\[ = 7 + 4 + 4 \][/tex]
[tex]\[ = 15 \][/tex]
Thus, the missing value [tex]\(a\)[/tex] in the second row is [tex]\(15\)[/tex].
#### Third Row:
[tex]\[ 9 \quad 3 \quad 2 \quad 6 \][/tex]
Let's verify using the same relation [tex]\( b + c - d \)[/tex] to check consistency:
For the third row:
[tex]\[ 3 + 2 - 6 \][/tex]
[tex]\[ = 3 + 2 - 6 \][/tex]
[tex]\[ = -1 \][/tex]
#### Fourth Row:
[tex]\[ 3 \quad -4 \quad 8 \quad -6 \][/tex]
Finally, let's verify for the fourth row using the same pattern:
[tex]\[ -4 + 8 - (-6) \][/tex]
[tex]\[ = -4 + 8 + 6 \][/tex]
[tex]\[ = 10 \][/tex]
### Summary:
All rows follow the relationship [tex]\(b + c - d\)[/tex], and we have verified it through all known rows.
Therefore, the number that completes the pattern in the matrix for the second row is [tex]\( \boxed{15} \)[/tex].