Determine the subject in each sentence. Then, circle the correct form of the verb.

1. [tex]$\frac{1}{9}$[/tex] and [tex]$\frac{1}{3}$[/tex]

2. [tex]$\frac{3}{8}$[/tex] and [tex]$\frac{2}{3}$[/tex]

3. [tex]$\frac{3}{8}$[/tex] and [tex]$\frac{2}{3}$[/tex]

4. [tex]$\frac{1}{3}$[/tex] and [tex]$\frac{4}{9}$[/tex]

5. [tex]$\frac{2}{7}$[/tex] and [tex]$\frac{3}{7}$[/tex]

6. [tex]$\frac{2}{3}$[/tex] and [tex]$\frac{7}{8}$[/tex]

7. [tex]$\frac{2}{3}$[/tex] and [tex]$\frac{7}{8}$[/tex]

8. [tex]$2 \frac{1}{3}$[/tex] and [tex]$\frac{1}{6}$[/tex]

9. [tex]$\frac{5}{6}$[/tex] and [tex]$\frac{2}{5}$[/tex]

10. [tex]$\frac{4}{5}$[/tex] and [tex]$\frac{5}{9}$[/tex]

11. [tex]$\frac{3}{5}$[/tex] and [tex]$\frac{5}{6}$[/tex]



Answer :

Certainly! Let's go through each pair of fractions one by one and determine if the first fraction is greater than the second fraction. Finally, we'll include the correct form of the verb in each sentence.

1. Compare [tex]\(\frac{1}{9}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex]:
- [tex]\(\frac{1}{9}\)[/tex] is less than [tex]\(\frac{1}{3}\)[/tex].
- Result: False

2. Compare [tex]\(\frac{3}{8}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex]:
- [tex]\(\frac{3}{8}\)[/tex] is less than [tex]\(\frac{2}{3}\)[/tex].
- Result: False

3. Compare [tex]\(-\frac{3}{8}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex]:
- [tex]\(-\frac{3}{8}\)[/tex] is less than [tex]\(\frac{2}{3}\)[/tex].
- Result: False

4. Compare [tex]\(\frac{1}{3}\)[/tex] and [tex]\(\frac{4}{9}\)[/tex]:
- [tex]\(\frac{1}{3}\)[/tex] is less than [tex]\(\frac{4}{9}\)[/tex].
- Result: False

5. Compare [tex]\(\frac{2}{7}\)[/tex] and [tex]\(\frac{3}{7}\)[/tex]:
- [tex]\(\frac{2}{7}\)[/tex] is less than [tex]\(\frac{3}{7}\)[/tex].
- Result: False

6. Compare [tex]\(\frac{2}{3}\)[/tex] and [tex]\(\frac{7}{8}\)[/tex]:
- [tex]\(\frac{2}{3}\)[/tex] is less than [tex]\(\frac{7}{8}\)[/tex].
- Result: False

7. Compare [tex]\(\frac{2}{3}\)[/tex] and [tex]\(\frac{7}{8}\)[/tex]:
- [tex]\(\frac{2}{3}\)[/tex] is less than [tex]\(\frac{7}{8}\)[/tex].
- Result: False

8. Compare [tex]\(2 \frac{1}{3}\)[/tex] and [tex]\(\frac{1}{6}\)[/tex]:
- Convert [tex]\(2 \frac{1}{3}\)[/tex] to an improper fraction: [tex]\(\frac{7}{3}\)[/tex]
- [tex]\(\frac{7}{3}\)[/tex] is greater than [tex]\(\frac{1}{6}\)[/tex].
- Result: True

9. Compare [tex]\(\frac{5}{6}\)[/tex] and [tex]\(\frac{2}{5}\)[/tex]:
- [tex]\(\frac{5}{6}\)[/tex] is greater than [tex]\(\frac{2}{5}\)[/tex].
- Result: True

10. Compare [tex]\(\frac{4}{5}\)[/tex] and [tex]\(\frac{5}{9}\)[/tex]:
- [tex]\(\frac{4}{5}\)[/tex] is greater than [tex]\(\frac{5}{9}\)[/tex].
- Result: True

11. Compare [tex]\(\frac{3}{5}\)[/tex] and [tex]\(\frac{5}{6}\)[/tex]:
- [tex]\(\frac{3}{5}\)[/tex] is less than [tex]\(\frac{5}{6}\)[/tex].
- Result: False

Now let's rewrite the sentences by determining the subject and circling the correct form of the verb:

1. The fraction [tex]\(\frac{1}{9}\)[/tex] is / isn't greater than [tex]\(\frac{1}{3}\)[/tex].
2. The fraction [tex]\(\frac{3}{8}\)[/tex] is / isn't greater than [tex]\(\frac{2}{3}\)[/tex].
3. The fraction [tex]\(-\frac{3}{8}\)[/tex] is / isn't greater than [tex]\(\frac{2}{3}\)[/tex].
4. The fraction [tex]\(\frac{1}{3}\)[/tex] is / isn't greater than [tex]\(\frac{4}{9}\)[/tex].
5. The fraction [tex]\(\frac{2}{7}\)[/tex] is / isn't greater than [tex]\(\frac{3}{7}\)[/tex].
6. The fraction [tex]\(\frac{2}{3}\)[/tex] is / isn't greater than [tex]\(\frac{7}{8}\)[/tex].
7. The fraction [tex]\(\frac{2}{3}\)[/tex] is / isn't greater than [tex]\(\frac{7}{8}\)[/tex].
8. The fraction [tex]\(2 \frac{1}{3}\)[/tex] is / isn't greater than [tex]\(\frac{1}{6}\)[/tex].
9. The fraction [tex]\(\frac{5}{6}\)[/tex] is / isn't greater than [tex]\(\frac{2}{5}\)[/tex].
10. The fraction [tex]\(\frac{4}{5}\)[/tex] is / isn't greater than [tex]\(\frac{5}{9}\)[/tex].
11. The fraction [tex]\(\frac{3}{5}\)[/tex] is / isn't greater than [tex]\(\frac{5}{6}\)[/tex].